Nutritional effects of supplementing liquid-formula diet with dietary fiber on elderly bed-ridden patients. (73/330)

In the past few decades, the number of bed-ridden elderly patients has been increasing. This group of patients is frequently fed with a liquid formula diet. The aim of this study was to evaluate the usefulness of a liquid formula diet containing dietary fiber (DF) for elderly bed-ridden patients. Eighteen elderly, bed-ridden patients were given L-3 Fiber, a DF-containing liquid formula diet (DF-LFD), for 4 weeks, while a number of parameters were monitored, including serum levels of total cholesterol, triglyceride, total protein, creatinine, uric acid, glucose, sodium, potassium, and calcium, urine protein/sugar, and defecation frequency. Total protein, albumin and total cholesterol significantly increased following the administration of the DF-LFD, associated with an average increase in body weight of 1.94 kg (5.0%). Defecation frequency significantly increased one week after DF-LFD administration was started, but this effect was transient. Although a few patients complained of nausea, vomiting or abdominal pain, no severe side effects were seen. In conclusion, DF-LFD supplementation appears to be beneficial for elderly bed-ridden patients, and can increase nutritional-related parameters, such as body weight, total protein, albumin and total cholesterol, without severe side effects.  (+info)

Resistance exercise as a countermeasure to disuse-induced bone loss. (74/330)

During spaceflight, skeletal unloading results in loss of bone mineral density (BMD). This occurs primarily in the spine and lower body regions. This loss of skeletal mass could prove hazardous to astronauts on flights of long duration. In this study, intense resistance exercise was used to test whether a training regimen would prevent the loss of BMD that accompanies disuse. Nine subjects (5 men, 4 women) participated in a supine maximal resistance exercise training program during 17 wk of horizontal bed rest. These subjects were compared with 18 control subjects (13 men, 5 women) who followed the same bed rest protocol without exercise. Determination of treatment effect was based on measures of BMD, bone metabolism markers, and calcium balance obtained before, during, and after bed rest. Exercisers and controls had significantly (P < 0.05) different means, represented by the respective following percent changes: lumbar spine BMD, +3% vs. -1%; total hip BMD, +1% vs. -3%; calcaneus BMD, +1% vs. -9%; pelvis BMD, -0.5% vs. -3%; total body BMD, 0% vs. -1%; bone-specific alkaline phosphatase, +64% vs. 0%; alkaline phosphatase, +31% vs. +5%; osteocalcin, +43% vs. +10%; 1,25 dihydroxyvitamin D, +12% vs. -15%; parathyroid hormone intact molecule, +18% vs. -25%; and serum and ionized calcium, -1% vs. +1%. The difference in net calcium balance was also significant (+21 mg/day vs. -199 mg/day, exercise vs. control). The gastrocnemius and soleus muscle volumes decreased significantly in the exercise group, but the loss was significantly less than observed in the control group. The results indicate that resistance exercise had a positive treatment effect and thus might be useful as a countermeasure to prevent the deleterious skeletal changes associated with long-duration spaceflight.  (+info)

Sleep restriction does not affect orthostatic tolerance in the simulated microgravity environment. (75/330)

Orthostatic intolerance (OI) is a major problem following spaceflight, and, during flight, astronauts also experience sleep restriction. We hypothesized that sleep restriction will compound the risk and severity of OI following simulated microgravity and exaggerate the renal, cardioendocrine, and cardiovascular adaptive responses to it. Nineteen healthy men were equilibrated on a constant diet, after which they underwent a tilt-stand test. They then completed 14-16 days of simulated microgravity [head-down tilt bed rest (HDTB)], followed by repeat tilt-stand test. During HDTB, 11 subjects were assigned to an 8-h sleep protocol (non-sleep restricted), and 8 were assigned to a sleep-restricted protocol with 6 h of sleep per night. During various phases, the following were performed: 24-h urine collections, hormonal measurements, and cardiovascular system identification. Development of presyncope or syncope defined OI. There was a significant decrease in time free of OI (P = 0.02) and an increase in OI occurrence (P = 0.06) after HDTB among all subjects. However, the increase in OI occurrence did not differ significantly between the two groups (P = 0.60). The two groups also experienced similar physiological changes with HDTB (initial increase in sodium excretion; increased excretion of potassium at the end of HDTB; increase in plasma renin activity secretion without a change in serum or urine aldosterone). No significant change in autonomic function or catecholamines was noted. Simulated microgravity leads to increased OI, and sleep restriction does not additively worsen OI in simulated microgravity. Furthermore, conditions of sleep restriction and nonsleep restriction are similar with respect to renal, cardioendocrine, and cardiovascular responses to simulated microgravity.  (+info)

Calf venous volume during stand-test after a 90-day bed-rest study with or without exercise countermeasure. (76/330)

The objectives to determine both the contribution to orthostatic intolerance (OI) of calf venous volume during a stand-test, and the effects of a combined eccentric-concentric resistance exercise countermeasure on both vein response to orthostatic test and OI, after 90-day head-down tilt bed-rest (HDT). The subjects consisted of a control group (Co-gr, n = 9) and an exercise countermeasure group (CM-gr, n = 9). Calf volume and vein cross-sectional area (CSA) were assessed by plethysmography and echography during pre- and post-HDT stand-tests. From supine to standing (post-HDT), the tibial and gastrocnemius vein CSA increased significantly in intolerant subjects (tibial vein, +122% from pre-HDT; gastrocnemius veins, +145%; P < 0.05) whereas it did not in tolerant subjects. Intolerant subjects tended to have a higher increase in calf filling volume than tolerant subjects, in both sitting and standing positions. The countermeasure did not reduce OI. Absolute calf volume decreased similarly in both groups. Tibial and gastrocnemius vein CSA at rest did not change during HDT in either group. During the post-HDT stand-test, the calf filling volume increased more in the CM-gr than in the Co-gr both in the sitting (+1.3 +/- 5.1%, vs. -7.3 +/- 4.3%; P < 0.05) and the standing positions (+56.1 +/- 23.7% vs. +1.6 +/- 9.6%; P < 0.05). The volume ejected by the muscle venous pump increased only in the CM-gr (+38.3 +/- 21.8%). This study showed that intolerant subjects had a higher increase in vein CSA in the standing position and a tendency to present a higher calf filling volume in the sitting and standing positions. It also showed that a combined eccentric-concentric resistance exercise countermeasure had no effects on either post-HDT OI or on the venous parameters related to it.  (+info)

The ratio of animal protein intake to potassium intake is a predictor of bone resorption in space flight analogues and in ambulatory subjects. (77/330)

BACKGROUND: Bone loss is a critical concern for space travelers, and a dietary countermeasure would be of great benefit. Dietary protein and potassium-associated bicarbonate precursors may have opposing effects on the acid-base balance in the body and therefore on bone loss. OBJECTIVE: In 2 studies, we examined the ability of dietary protein and potassium to predict markers of bone metabolism. DESIGN: In the first study, 8 pairs of male identical twins were assigned to 1 of 2 groups: bed rest (sedentary, or SED, group) or bed rest with supine treadmill exercise in a lower-body negative pressure chamber (EX group). In a second study, groups of 4 subjects lived in a closed chamber for 60 or 91 d, and dietary data were collected for two or three 5-d sessions. Urinary calcium, N-telopeptide, and pyridinium cross-links were measured before bed rest; on bed rest days 5-6, 12-13, 19-20, and 26-27; and daily during the chamber studies. Data were analyzed by Pearson's correlation (P < 0.05). RESULTS: The ratio of animal protein intake to potassium intake was significantly correlated with N-telopeptide in the SED group during bed rest weeks 3 and 4 (r = 0.77 and 0.80) and during the 91-d chamber study (r = 0.75). The ratio of animal protein intake to potassium intake was positively correlated with pyridinium cross-links before bed rest in the EX group (r = 0.83), in the EX group during bed rest week 1 (r = 0.84), and in the SED group during bed rest week 2 (r = 0.72) but not during either chamber study. In both studies, these relations were not significant with the ratio of vegetable protein intake to potassium intake. CONCLUSIONS: The ratio of animal protein intake to potassium intake may affect bone in ambulatory and bed-rest subjects. Changing this ratio may help to prevent bone loss on Earth and during space flight.  (+info)

Plasma volume restoration with salt tablets and water after bed rest prevents orthostatic hypotension and changes in supine hemodynamic and endocrine variables. (78/330)

Head-down bed rest changes the values of many cardiovascular and endocrine variables and also elicits significant hypovolemia. Because previous studies had not controlled for hypovolemia, it is unknown whether the reported changes were primary effects of bed rest or secondary effects of bed rest-induced hypovolemia. We hypothesized that restoring plasma volume with salt tablets and water after 12 days of head-down bed rest would result in an absence of hemodynamic and endocrine changes and a reduced incidence of orthostatic hypotension. In 10 men, we measured changes from pre-bed-rest to post-bed-rest in venous and arterial pressures; heart rate; stroke volume; cardiac output; vascular resistance; plasma norepinephrine, epinephrine, vasopressin, renin activity (PRA), and aldosterone responses to different tilt levels (0 degrees, -10 degrees, 20 degrees, 30 degrees, and 70 degrees); and plasma volume and platelet alpha2- and lymphocyte beta2-adrenoreceptor densities and affinities (0 degrees tilt only). Fluid loading at the end of bed rest restored plasma volume and resulted in the absence of post-bed-rest orthostatic hypotension and changes in supine hemodynamic and endocrine variables. Fluid loading did not prevent post-bed-rest increases in beta2-adrenoreceptor density or decreases in the aldosterone-to-PRA ratio (P = 0.05 for each). Heart rate, epinephrine, and PRA responses to upright tilt after bed rest were increased (P < 0.05), despite the fluid load. These results suggest that incidents of orthostatic hypotension and many of the changes in supine hemodynamic and endocrine variables in volume-depleted bed-rested subjects occur secondarily to the hypovolemia. Despite normovolemia after bed rest, beta2-adrenoreceptors were upregulated, and heart rate, epinephrine, and PRA responses to tilt were augmented, indicating that these changes are independent of volume depletion.  (+info)

Long-term bed rest-induced reductions in stroke volume during rest and exercise: cardiac dysfunction vs. volume depletion. (79/330)

Long-term head-down-tilt bed rest (HDT) causes cardiovascular deconditioning, attributed to reflex dysfunctions, plasma volume reduction, or cardiac impairments. Our objective with the present study was to evaluate the functional importance and relative contribution of these during rest and exercise in supine and upright postures. We studied six subjects before (baseline), during [days 60 (D60) and 113 (D113)], and after [recovery days 0 (R0), 3 (R3), and 15 (R15)] 120 days of -6 degrees HDT. We determined cardiac output, stroke volume (SV), mean arterial pressure, and heart rate during rest and exercise in supine and upright postures. Cardiac output and SV decreased significantly in all four conditions, but the time courses differed for rest and exercise. Upright resting SV was decreased by 24 +/- 9% at D60 compared with baseline but had recovered already at R3. Supine exercise SV decreased more slowly (by 5 +/- 8% at D60 and by 18 +/- 4% at D113) and recovered more slowly after HDT termination. Steady-state mean arterial pressure showed no changes. Heart rate had increased by 18 +/- 4% at D60 and had recovered partially at R3. Our data indicate that long-term HDT causes both a rapid, preload-dependent reduction in SV, most evident during rest in the upright position, and a more slowly developing cardiac dysfunction, most evident during supine exercise. However, the ability to maintain blood pressure and to perform sustained low levels of dynamic exercise is not influenced by HDT.  (+info)

Is bed rest an effective treatment modality for pressure ulcers? (80/330)

Despite the well-documented medical, physical, and psychological complications associated with this care management option, bed rest remains a frequently prescribed treatment modality for conditions such as pressure ulcers. Cognitive and psychosocial complications of bed rest include depression, learned helplessness, perceptual changes, and fatigue. Physically, complications can include contractures, muscle atrophy, osteoporosis, pathologic fractures, urinary tract infections, decreased cardiac reserve, decreased stroke volume, resting and post-exercise tachycardia, orthostatic hypotension, pulmonary embolism, deep venous thrombosis, pneumonia, anorexia, constipation, and bowel impaction. Furthermore, the literature does not contain evidence supporting the use of bed rest to facilitate healing of pressure ulcers. More suitable approaches to pressure ulcer care include limiting bed rest, initiating occupational therapy, integrating meaningful tasks into daily activities, increasing outside stimulation, involving patients in care decisions and addressing their concerns, optimizing nutritional status, and managing pressure and shear throughout daily activities. Recommendations for implementing alternatives to bed rest are addressed.  (+info)