Pathogenicity of Metarhizium anisopliae (Metch) Sorok and Beauveria bassiana (Bals) Vuill to adult Phlebotomus duboscqi (Neveu-Lemaire) in the laboratory. (57/123)

BACKGROUND & OBJECTIVES: Biological control of sandflies using entomopathogenic fungi is a possible alternative to the expensive synthetic chemical control. It is potentially sustainable, less hazardous, and relatively inexpensive and merits further investigations. The objective of this study was to identify the most pathogenic fungal isolate(s) to sandflies in the laboratory. METHODS: Isolates of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were screened for their pathogenicity against Phlebotomus duboscqi. Adult flies were contaminated using the technique described by Migiro et al (2010). Briefly, flies were exposed to 0.1 g of dry conidia evenly spread on a cotton velvet cloth covering the inner side of a cylindrical plastic tube (95 mm long x 48 mm diam). In all 25 sandflies were transferred into the cylindrical tube and allowed to walk on the velvet for one minute, after which they were transferred from the velvet into the cages in Perplex. Insects in the control treatments were exposed to fungusfree velvet cloth before being transferred into similar cages. The treatments were maintained at 25 +/- 2 degrees C, 60-70% RH and 12L: 12D photoperiod. The experiment was replicated 5 times. The most pathogenic isolates were selected for further studies. RESULTS: A total of 19 isolates were screened against adult sandflies in the laboratory. Mortality in the controls was approximately 16.8 +/- 1.7 %. All the isolates were found to be pathogenic to P. duboscqi. Mortality ranged between 76.8 and 100% on all the fungal isolates tested. The lethal time taken to 50% (LT50) and 90% (LT90) mortality ranged from 3.0-7.8 days and from 5.3-16.2 days, respectively. The virulent isolates, causing mortalities of 97.5-100%, were selected for further studies. INTERPRETATION & CONCLUSION: The high susceptibility of sandflies to entomopathogenic fungi suggests that fungi are potential alternatives to chemical control methods. We conclude that application of entomopathogenic fungi could result in acute mortalities of sandflies and reduction of parasite transmission and subsequently, reduction of leishmaniasis risk. This method of biological control has great potential as a new strategy for leishmaniasis control.  (+info)

Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. (58/123)

 (+info)

Genetic analyses place most Spanish isolates of Beauveria bassiana in a molecular group with word-wide distribution. (59/123)

 (+info)

Growth inhibition of Beauveria bassiana by bacteria isolated from the cuticular surface of the corn leafhopper, Dalbulus maidis and the planthopper, Delphacodes kuscheli, two important vectors of maize pathogens. (60/123)

 (+info)

Microbial metabolism. Part 12. Isolation, characterization and bioactivity evaluation of eighteen microbial metabolites of 4'-hydroxyflavanone. (61/123)

Fermentation of 4'-hydroxyflavanone (1) with fungal cultures, Beauveria bassiana (ATCC 13144 and ATCC 7159) yielded 6,3',4'-trihydroxyflavanone (2), 3',4'-dihydroxyflavanone 6-O-beta-D-4-methoxyglucopyranoside (3), 4'-hydroxyflavanone 3'-sulfate (4), 6,4'-dihydroxyflavanone 3'-sulfate (5) and 4'-hydroxyflavanone 6-O-beta-D-4-methoxyglucopyranoside (7). B. bassiana (ATCC 13144) and B. bassiana (ATCC 7159) in addition, gave one more metabolite each, namely, flavanone 4'-O-beta-D-4-methoxyglucopyranoside (6) and 6,4'-dihydroxyflavanone (8) respectively. Cunninghamella echinulata (ATCC 9244) transformed 1 to 6,4'-dihydroxyflavanone (8), flavanone-4'-O-beta-D-glucopyranoside (9), 3'-hydroxyflavanone 4'-sulfate (10), 3',4'-dihydroxyflavanone (11) and 4'-hydroxyflavanone-3'-O-beta-D-glucopyranoside (12). Mucor ramannianus (ATCC 9628) metabolized 1 to 2,4-trans-4'-hydroxyflavan-4-ol (13), 2,4-cis-4'-hydroxyflavan-4-ol (14), 2,4-trans-3',4'-dihydroxyflavan-4-ol (15), 2,4-cis-3',4'-dihydroxyflavan-4-ol (16), 2,4-trans-3'-hydroxy-4'-methoxyflavan-4-ol (17), flavanone 4'-O-alpha-D-6-deoxyallopyranoside (18) and 2,4-cis-4-hydroxyflavanone 4'-O-alpha-D-6-deoxyallopyranoside (19). Metabolites 13 and 14 were also produced by Ramichloridium anceps (ATCC 15672). The former was also produced by C. echinulata. Structures of the metabolic products were elucidated by means of spectroscopic data. None of the metabolites tested showed antibacterial, antifungal and antiprotozoal activities against selected organisms.  (+info)

Characterization of a newly discovered Beauveria bassiana isolate to Franklimiella occidentalis Perganda, a non-native invasive species in China. (62/123)

 (+info)

Mass production of aphicidal Beauveria bassiana SFB-205 supernatant with the parameter of chitinase. (63/123)

Beauveria bassiana SFB-205 supernatant can effectively control cotton aphid populations, which is closely associated with its chitinase activity. The present work extends to optimizing a culture medium to produce more efficacious supernatant in flask conditions, followed by scale-up in 7 L, 300 L and 1.2 KL fermentors with the parameter of chitinase. In flask conditions, a combination of soluble starch and yeast extract produced the greatest amount of chitinase (5.1 units/ml) and its supernatant had the highest aphicidal activity. An optimal quantitative combination of the two substrates, estimated by a response surface method, enabled the supernatant to have 15.7 units/ml of chitinase activity and 3.7 ml/l of median lethal concentration (LC50) of toxicity against cotton aphid adults in laboratory conditions. In the scale-up conditions, overall supernatant had 25-28 units/ml of chitinase activity. Decrease in pH and limitation of dissolved oxygen (DO) during cultures were significantly related to the yield of chitinase. These results suggest that the substrate-dependent chitinase production can be background information for optimizing a culture medium, and pH and DO are critical factors in maximizing the production in scale-up conditions.  (+info)

Reduction in host-finding behaviour in fungus-infected mosquitoes is correlated with reduction in olfactory receptor neuron responsiveness. (64/123)

 (+info)