Impairment of the proapoptotic activity of Bax by missense mutations found in gastrointestinal cancers. (49/2563)

We have reported previously that codon 169 of the proapoptotic gene BAX is a mutational hot spot in gastrointestinal cancer. Two different mutations were found in this codon, replacing the wild-type threonine by alanine or methionine. To compare the proapoptotic activity of these Bax mutants with wild-type Bax, we established an ecdysone (muristerone A)-inducible system in cultured human embryonal kidney 293 cells. Addition of muristerone A induced a dose-dependent decrease in the viability of cells transfected with wild-type BAX, but this loss of viability was inhibited in cells transfected with BAX mutants. Furthermore, muristerone A induced morphological changes characteristic of apoptosis, including cell shrinkage, rounding, formation of apoptotic bodies, detachment and nuclear condensation and fragmentation, in cells transfected with wild-type BAX. These hallmarks of apoptosis were clearly diminished in cells transfected with BAX mutants. Mutation of threonine 169 did not affect the binding of Bax to Bax, Bcl-2, or Bcl-X(L). These results demonstrate that missense mutations at codon 169 of BAX are functional because they inhibit its apoptotic activity. This is the first report of the functional significance of missense mutations in BAX, or any other proapoptotic member of the Bcl-2 family, in primary human tumors.  (+info)

Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. (50/2563)

The sequenced gammaherpesviruses each contain a single viral bcl-2 homolog (v-bcl-2) which may encode a protein that functions in preventing the apoptotic death of virus-infected cells. Epstein-Barr virus (EBV), a gammaherpesvirus associated with several lymphoid and epithelial malignancies, encodes the v-Bcl-2 homolog BHRF1. In this report the previously uncharacterized BALF1 open reading frame in EBV is identified as having significant sequence similarity to other v-bcl-2 homologs and cellular bcl-2. Transfection of cells with a BALF1 cDNA conferred apoptosis resistance. Furthermore, a recombinant green fluorescent protein-BALF1 fusion protein suppressed apoptosis and associated with Bax and Bak. These results indicate that EBV encodes a second functional v-bcl-2.  (+info)

Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. (51/2563)

Release of proteins through the outer mitochondrial membrane can be a critical step in apoptosis, and the localization of apoptosis-regulating Bcl-2 family members there suggests they control this process. We used planar phospholipid membranes to test the effect of full-length Bax and Bcl-xL synthesized in vitro and native Bax purified from bovine thymocytes. Instead of forming pores with reproducible conductance levels expected for ionic channels, Bax, but not Bcl-xL, created arbitrary and continuously variable changes in membrane permeability and decreased the stability of the membrane, regardless of whether the source of the protein was synthetic or native. This breakdown of the membrane permeability barrier and destabilization of the bilayer was quantified by using membrane lifetime measurements. Bax decreased membrane lifetime in a voltage- and concentration-dependent manner. Bcl-xL did not protect against Bax-induced membrane destabilization, supporting the idea that these two proteins function independently. Corresponding to a physical theory for lipidic pore formation, Bax potently diminished the linear tension of the membrane (i.e., the energy required to form the edge of a new pore). We suggest that Bax acts directly by destabilizing the lipid bilayer structure of the outer mitochondrial membrane, promoting the formation of a pore-the apoptotic pore-large enough to allow mitochondrial proteins such as cytochrome c to be released into the cytosol. Bax could then enter and permeabilize the inner mitochondrial membrane through the same hole.  (+info)

Mechanisms of apoptosis induced by the synthetic retinoid CD437 in human non-small cell lung carcinoma cells. (52/2563)

The novel synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) has been shown to induce apoptosis in various tumor cell lines including human non-small cell lung carcinoma (NSCLC) cells, which are resistant to the natural all-trans retinoic acid and to many synthetic receptor-selective retinoids. Although the mechanism of this effect was not elucidated, it was found to be independent of nuclear retinoid receptors. In the present study, we analysed the mechanisms by which CD437 induces apoptosis in two human NSCLC cell lines: H460 with wild-type p53 and H1792 with mutant p53. Both cell lines underwent apoptosis after exposure to CD437, although the cell line with wild-type p53 (H460) was more sensitive to the induction of apoptosis. CD437 increased the activity of caspase in both cell lines, however, the effect was much more pronounced in the H460 cells. The caspase inhibitors (Z-DEVD-FMK and Z-VAD-FMK) suppressed CD437-induced CPP32-like caspase activation and apoptosis in both cell lines. CD437 induced the expression of the p53 gene and its target genes, p21, Bax, and Killer/DR5, only in the H460 cells. These results suggest that CD437-induced apoptosis is more extensive in NSCLC cells that express wild-type p53, possibly due to the involvement of the p53 regulated genes Killer/DR5, and Bax although CD437 can also induce apoptosis by means of a p53-independent mechanism. Both pathways of CD437-induced apoptosis appear to involve activation of CPP32-like caspase.  (+info)

Apoptosis and Bcl-xs in the intimal thickening of balloon-injured carotid arteries. (53/2563)

We performed balloon injury in the rat carotid artery and identified intimal thickening after injury. Balloon-injured carotid arteries showed maximum thickness of the neointima on the 14th day before complete endothelial cell regeneration. In this lesion we identified apoptosis of vascular smooth muscle cells (VSMCs) by in situ DNA labelling and electron microscopy in the neointima on the 14th day after injury. mRNA expression levels of bcl-2, bax, bcl-x, p53 and caspase-1 were determined by the reverse transcriptase-polymerase chain reaction method both in injured and uninjured carotid arteries. Neither bcl-2 nor bcl-xl mRNA expression was detected in either injured or uninjured arteries, whereas bax and p53 mRNA expression was identified and their mRNA levels were not altered after balloon injury. In contrast, both bcl-xs and caspase-1 mRNA was detected and was markedly induced only in the injured carotid artery. Positive staining for immunoreactive Bcl-x was observed specifically in the injured arterial wall and co-localized with positive staining of nuclei identified by in situ DNA labelling. We conclude that two opposite cellular responses, VSMC proliferation and apoptosis, exist together in the neointima of the rat carotid artery after balloon injury, and selective induction of Bcl-xs expression is a key regulator of VSMC apoptosis in the process of vascular remodelling.  (+info)

Betulinic acid-induced apoptosis in glioma cells: A sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing. (54/2563)

Betulinic acid (BA), a pentacyclic triterpene, is an experimental cytotoxic agent for malignant melanoma. Here, we show that BA triggers apoptosis in five human glioma cell lines. BA-induced apoptosis requires new protein, but not RNA, synthesis, is independent of p53, and results in p21 protein accumulation in the absence of a cell cycle arrest. BA-induced apoptosis involves the activation of caspases that cleave poly(ADP ribose)polymerase. Interactions of death ligand/receptor pairs of the CD95/CD95 ligand family do not mediate BA-induced caspase activation. BA enhances the levels of BAX and BCL-2 proteins but does not alter the levels of BCL-xS or BCL-xL. Ectopic expression of BCL-2 prevents BA-induced caspase activation, DNA fragmentation, and cell death. Furthermore, BA induces the formation of reactive oxygen species that are essential for BA-triggered cell death. The generation of reactive oxygen species is blocked by BCL-2 and requires new protein synthesis but is unaffected by caspase inhibitors, suggesting that BA toxicity sequentially involves new protein synthesis, formation of reactive oxygen species, and activation of crm-A-insensitive caspases.  (+info)

Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons. (55/2563)

Amphetamineanalogs have emerged as popular recreational drugs of abuse. The number of reports of these substances producing severe acute toxicity and death is increasing. In 'Ecstasy' -associated deaths, focal necrosis in the liver and individual myocytic necrosis has been reported. Furthermore, serotonergic and dopaminergic neuronal cell damage has been observed in experimental amphetamine intoxication in laboratory animals. Here we demonstrate that subchronic exposure to D-amphetamine, methamphetamine, methylenedioxyamphetamine, and methylenedioxymethamphetamine ('Ecstasy') results in significant neurotoxicity in rat neocortical neurons in vitro. This neuronal cell death is accompanied by endonucleosomal DNA cleavage and differential expression of anti- and proapoptotic bcl-xL/S splice variants. In addition, we observed pronounced induction of cell stress-associated transcription factor c-jun and translation initiation inhibitor p97 after amphetamine treatment. These data support that the neurotoxic effects of different amphetamines are extended to rat neocortical neurons and that apoptotic pathways are involved in amphetamine-induced neurotoxicity.  (+info)

p75 neurotrophin receptor-mediated neuronal death is promoted by Bcl-2 and prevented by Bcl-xL. (56/2563)

The p75 neurotrophin receptor (p75NTR) has been shown to mediate neuronal death through an unknown pathway. We microinjected p75NTR expression plasmids into sensory neurons in the presence of growth factors and assessed the effect of the expressed proteins on cell survival. We show that, unlike other members of the TNFR family, p75NTR signals death through a unique caspase-dependent death pathway that does not involve the "death domain" and is differentially regulated by Bcl-2 family members: the anti-apoptotic molecule Bcl-2 both promoted, and was required for, p75NTR killing, whereas killing was inhibited by its homologue Bcl-xL. These results demonstrate that Bcl-2, through distinct molecular mechanisms, either promotes or inhibits neuronal death depending on the nature of the death stimulus.  (+info)