Polycyclic aromatic hydrocarbons with bay-like regions inhibited gap junctional intercellular communication and stimulated MAPK activity. (1/8)

Many polycyclic aromatic hydrocarbons (PAHs) are known carcinogens. A considerable amount of research has been devoted to predicting the genotoxic, tumor-initiating potential of PAHs based on chemical structure. However, information on the correlation of structure with the non-genetoxic, epigenetic events of tumor promotion is sparse. PAHs containing a bay or bay-like region were shown to be potent inhibitors of gap-junctional intercellular communication (GJIC), an epigenetic event involved in the removal of an initiated cell from growth suppression. We tested the epigenetic toxicity of PAHs containing bay-like regions by comparing the effects of methylated vs. chlorinated isomers of anthracene on the temporal activation of mitogen-activated protein kinase (MAPK) and the regulation of GJIC. Specifically, we used anthracene, 1-methylanthracene, 2-methylanthracene, 9-methylanthracene, 9,10-dimethylanthracene, 1-chloroanthracene, 2-chloroanthracene, and 9-chloroanthracene. We determined the effect of these compounds on GJIC and on the activation of extracellular receptor kinase (ERK 1 and 2), a MAPK, in F344 rat liver epithelial cells. Results showed that bay or bay-like regions, formed by either chlorine or a methyl group, reversibly inhibited GJIC at the same doses, time, and time of recovery, whereas the linear-planar isomers had no effect on GJIC. Similarly, the GJIC-inhibitory isomers also induced the phosphorylation of ERK 1 and ERK 2, while the non-inhibitory isomers had no effect on the activation of these MAPKs. MAPK activation occurred 10-20 min after the inhibition of GJIC, which indicates that MAPK is not involved in the initial regulation of GJIC; instead altered GJIC may be affecting MAPK activation. The present study revealed that there are structural determinants of PAHs, which clearly affect epigenetic events known to be involved in the non-genetoxic steps of tumor promotion. These events are the release of a cell from growth suppression involving the reduction of GJIC, followed by the activation of intracellular mitogenic events.  (+info)

Three-dimensional structure of anti-5,6-dimethylchrysene-1, 2-dihydrodiol-3,4-epoxide: a diol epoxide with a bay region methyl group. (2/8)

The three-dimensional structure of a dihydrodiol epoxide of 5, 6-dimethylchrysene was elucidated by X-ray diffraction techniques. The effects of the steric overcrowding by the 5-methyl group in the bay region of this compound are described. The carbon atom of the 5-methyl group is found to lie out of the plane of the aromatic system, thereby avoiding the nearer C-H group of the epoxide ring; this C-H hydrogen atom is pushed in the opposite direction. As a result, the molecule is distorted so that the relative orientations of the epoxide group and the aromatic ring systems are very different for the diol epoxides of (nearly planar) benzo[a]pyrene (studied by Neidle and co-workers) and (distorted) 5, 6-dimethylchrysene (described here). The main effect of the 5-methyl group is to change the relative angle between the epoxide-bearing ring (the site of attack when the diol epoxide acts as an alkylating agent) and the aromatic ring system (which is presumed to lie partially between the DNA bases in the DNA adduct that is about to be formed). This may favor some specific alkylation geometry.  (+info)

Tumorigenicity of four optically active bay-region 3,4-diol 1, 2-epoxides and other derivatives of the nitrogen heterocycle dibenz[c,h]acridine on mouse skin and in newborn mice. (3/8)

The nitrogen heterocycle dibenz[c,h]acridine (DB[c,h]ACR) and the enantiomers of the diastereomeric pair of bay-region 3,4-diol 1, 2-epoxides as well as other bay-region epoxides and dihydrodiol derivatives of this hydrocarbon have been evaluated for tumorigenicity on mouse skin and in the newborn mouse. On mouse skin, a single topical application of 50 or 200 nmol of compound was followed 10 days later by twice-weekly applications of the tumor promoter 12-O:-tetradecanoylphorbol-13-acetate for 20 weeks. DB[c, h]ACR and the four optically pure, bay-region 3,4-diol-1,2-epoxide isomers all had significant tumor- initiating activity. The isomer with (1R,2S,3S,4R) absolute configuration [(+)-DE-2] was the most active diol epoxide isomer. The (-)-(3R,4R)-dihydrodiol of DB[c, h]ACR, the expected metabolic precursor of the bay-region (+)-DE-2, was 4- to 6-fold more tumorigenic than its corresponding (+)-enantiomer. In tumorigenicity studies in newborn mice, a total dose of 70-175 nmol of DB[c,h]ACR or one of its derivatives was injected i.p. on days 1, 8 and 15 of life, and tumorigenic activity was determined when the mice were 36-39 weeks old. DB[c,h]ACR produced a significant number of pulmonary tumors and also produced hepatic tumors in male mice. Of the four optically active bay-region diol epoxides, only (+)-DE-2 and (+)-DE-1 with (1R,2S,3S,4R) and (1S, 2R,3S,4R) absolute configuration, respectively, produced a significant tumor incidence. At an equivalent dose, the (+)-DE-2 isomer produced several-fold more pulmonary tumors and hepatic tumors than the (+)-DE-1 isomer. The (-)-(3R,4R)-dihydrodiol, metabolic precursor of the bay-region (+)-DE-2, was strongly active and induced an equal number of pulmonary and hepatic tumors as did DB[c,h]ACR. The (+)-(3S,4S) dihydrodiol was less active. The bay-region (+)-(1R,2S)-epoxide of 1,2,3,4-tetrahydro DB[c,h]ACR was strongly tumorigenic in newborn mice whereas its (-)-(1S, 2R)-enantiomer was inactive. This contrasts with the data on mouse skin where both enantiomers had substantial tumorigenic activity. In summary, the bay-region (+)-(1R,2S,3S,4R)-3,4-diol 1,2-epoxide of DB[c,h]ACR was the most tumorigenic of the four optically active bay-region diol epoxides of DB[c,h]ACR on mouse skin and in the newborn mouse. These results with a nitrogen heterocycle are similar to earlier data indicating high tumorigenic activity for the R,S,S,R bay-region diol epoxides of several carbocyclic polycyclic aromatic hydrocarbons.  (+info)

Preferential glutathione conjugation of a reverse diol epoxide compared to a bay region diol epoxide of phenanthrene in human hepatocytes: relevance to molecular epidemiology studies of glutathione-s-transferase polymorphisms and cancer. (4/8)

 (+info)

Studies of the binding of diolepoxide metabolites of polycyclic aromatic hydrocarbons to DNA using electrofluorescence polarization spectroscopy. (5/8)

In the electrofluorescence method, a solution of DNA with covalently bound polycyclic hydrocarbons is placed in an electric field, and changes in the intensity of polarized fluorescence are observed. Under the correct conditions, these charges can be used to determine a value for the angle psi between the long axis of the hydrocarbon molecule and the axis of the DNA helix. For DNA or poly(dA-dT) treated with each stereoisomer of anti-benzo[c]phenanthrene diolepoxide, psi ranged from 55 degrees to 61 degrees, consistent with a mixture of quasi-intercalated adenine adducts and externally bound guanine adducts. Similar results were obtained with another set of 'fjord-region' diolepoxides, derived from benzo[c]chrysene. Adducts in DNA treated with diolepoxides derived from chrysene, 5-methylchrysene or 6-methylchrysene gave psi of about 53 degrees, so the predominant adducts are externally bound, probably in the minor groove of DNA.  (+info)

Bay or baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of Gap junctional intercellular communication. (6/8)

Many polycyclic aromatic hydrocarbons (PAHs) are known carcinogens, and a considerable amount of research has been devoted to predicting the tumor-initiating potential of PAHs based on chemical structure. However, there has been little research into the effects of PAHs on the epigenetic events of tumor promotion and no structural correlation has been made thereof. Gap junctional intercellular communication (GJIC) activity was used in this study as an epigenetic biomarker to determine the structure-activity relationships of twelve different PAHs. The PAHs used were naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, anthracene, 1-methylanthracene, 2-methylanthracene, 9-methylanthracene, 9, 10-dimethylanthracene, phenanthrene, fluorene, 1-methylfluorene, and fluoranthene. Results showed that PAHs containing bay or baylike regions inhibited GJIC more than did the linear PAHs. The nonnaphthalene PAHs were not cytotoxic as determined by a vital dye uptake assay, but the naphthalene compounds were cytotoxic at the higher doses, indicating that the down regulation of GJIC by these naphthalenes could be a consequence of general membrane damage. Inhibition of GJIC by all the inhibitory PAHs was reversed when the cells were refreshed with PAH-free growth medium. Inhibition of GJIC occurred within 0.5-5 min and correlated with the aqueous solubility of the PAHs. The present study revealed that there are structural determinants of epigenetic toxicity as determined by GJIC activity.  (+info)

Comparative mouse skin tumorigenicity and induction of Ha-ras mutations by bay region diol epoxides of 5-methylchrysene and 5,6-dimethylchrysene. (7/8)

We compared the tumor-initiating activities toward mouse skin of two structurally related polycyclic aromatic hydrocarbon diol epoxides: racemic anti-1,2,3,4-tetrahydro-5,6-dimethylchrysene-1,2-diol-3,4-epoxide (5,6-diMeCDE) and racemic anti-1,2,3,4-tetrahydro-5-methylchrysene-1,2-diol-3,4-epoxide (5-MeCDE). Tumors induced by these diol epoxides were analysed for mutations in the Ha-ras gene. 5,6-diMeCDE is derived from the non-planar parent compound 5,6-dimethylchrysene, and reacts to approximately equal extents with dA and dG in DNA, whereas 5-MeCDE is derived from a nearly planar parent compound, 5-methylchrysene, and reacts mainly with dG in DNA. 5,6-diMeCDE, at initiating doses of 33, 100 or 400 nmol per mouse, induced 1.2, 2.2 and 6.2 skin tumors per mouse, respectively. It was significantly less tumorigenic than 5-MeCDE which induced 3.1, 7.5 and 9.1 skin tumors per mouse at the same doses. Tumors induced by 5,6-diMeCDE had a large number of CAA-->CTA mutations in codon 61 of the Ha-ras gene: 50, 55 and 75% of the tumors analysed had this mutation at the 33, 100 and 400 nmol doses. No mutations were found in codons 12 and 13 in the tumors induced by 5,6-diMeCDE. In contrast, CAA-->CTA mutations in codon 61 were rarely seen in tumors induced by 5-MeCDE. At the highest dose of 5-MeCDE, 20% of the tumors analysed had mutations at G of codons 12 and 13. The results of this comparative study support the hypothesis that mutations in the Ha-ras gene in mouse skin tumors induced by PAH diol epoxides occur as a result of their direct reaction with the gene. However, pathways other than the commonly observed Ha-ras codon 61 mutations are clearly important in mouse skin tumorigenesis by these diol epoxides.  (+info)

Detoxification of optically active bay- and fjord-region polycyclic aromatic hydrocarbon dihydrodiol epoxides by human glutathione transferase P1-1 expressed in Chinese hamster V79 cells. (8/8)

Dihydrodiol epoxides (DEs) are important carcinogenic metabolites of polycyclic aromatic hydrocarbons (PAHs). The metabolic formation of four stereoisomeric DEs (a pair of optically active diastereomers termed as syn- and anti-form) is possible. Glutathione tranferases (GSTs) have been demonstrated to catalyze the detoxification of DEs. Purified GSTs display remarkable differences in catalytic efficiencies towards bay- and fjord-region DEs along with a high degree of regio- and stereoselectivity. Here we determined to which extent heterologously expressed human GSTP1-1, a major GST isoform in lung, affects the mutagenicity of stereoisomeric bay-region DEs of benzo[a]pyrene in Chinese hamster V79 cells. To evaluate the influence of sterical crowding in the substrate on the activity of GSTP-1, the study was extended to the strongly mutagenic fjord-region (-)-anti-DEs of benzo[c]phenanthrene and dibenzo[a,l]pyrene. GSTP1-1,reduced preferentially the mutagenicity (studied at the hprt locus) of (+)-anti and (+)-syn-DEs of benzo[a]pyrene (by 66 and 67%) as compared with the corresponding (-)-anti- and (-)-syn-enantiomers (by 15 and 13%). These results are in line with previous studies on the enantioselectivity of purified GSTP1-1 towards the DE isomers of benzo[a]pyrene and benzo[c]phenanthrene showing that enantiomers with (R)-configuration at the benzylic oxiranyl carbon are better substrates than those with (S)-configuration. Interestingly, the (-)-anti-DEs of benzo[c]phenanthrene and dibenzo[a,l]pyrene were efficiently detoxified by GSTP-1-1 in the constructed cell line (reduction of mutagenicity by 66 and 64%). This study demonstrates that differences in the caalytic activity seen for purified GST towards individual mutagens do not necessarily reflect the detoxification of DEs by the same enzyme in a living cell and provides further evidence that specific human GSTs play a role in the detoxification of DEs of PAHs.  (+info)