The recognition of a noncanonical RNA base pair by a zinc finger protein. (49/2613)

BACKGROUND: The zinc finger (ZF) is the most abundant nucleic-acid-interacting protein motif. Although the interaction of ZFs with DNA is reasonably well understood, little is known about the RNA-binding mechanism. We investigated RNA binding to ZFs using the Zif268-DNA complex as a model system. Zif268 contains three DNA-binding ZFs; each independently binds a 3 base pair (bp) subsite within a 9 bp recognition sequence. RESULTS: We constructed a library of phage-displayed ZFs by randomizing the alpha helix of the Zif268 central finger. Successful selection of an RNA binder required a noncanonical base pair in the middle of the RNA triplet. Binding of the Zif268 variant to an RNA duplex containing a G.A mismatch (rG.A) is specific for RNA and is dependent on the conformation of the mismatched middle base pair. Modeling and NMR analyses revealed that the rG.A pair adopts a head-to-head configuration that counterbalances the effect of S-puckered riboses in the backbone. We propose that the structure of the rG.A duplex is similar to the DNA in the original Zif268-DNA complex. CONCLUSIONS: It is possible to change the specificity of a ZF from DNA to RNA. The ZF motif can use similar mechanisms in binding both types of nucleic acids. Our strategy allowed us to rationalize the interactions that are possible between a ZF and its RNA substrate. This same strategy can be used to assess the binding specificity of ZFs or other protein motifs for noncanconical RNA base pairs, and should permit the design of proteins that bind specific RNA structures.  (+info)

Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA. (50/2613)

The downstream box (DB) is a sequence element that enhances translation of several bacterial and phage mRNAs. It has been proposed that the DB enhances translation by base pairing transiently to bases 1469-1483 of 16S rRNA, the so-called anti-DB, during the initiation phase of translation. We have tested this model of enhancer action by constructing mutations in the anti-DB that alter its mRNA base-pairing potential and examining expression of a variety of DB-containing mRNAs in strains expressing the mutant anti-DB 16S rRNA. We found that the rRNA mutant was viable and that expression of all tested DB-containing mRNAs was completely unaffected by radical alterations in the proposed anti-DB. These findings lead us to conclude that enhancement of translation by the DB does not involve mRNA-rRNA base pairing.  (+info)

Congenital end-plate acetylcholinesterase deficiency caused by a nonsense mutation and an A-->G splice-donor-site mutation at position +3 of the collagenlike-tail-subunit gene (COLQ): how does G at position +3 result in aberrant splicing? (51/2613)

Congenital end-plate acetylcholinesterase (AChE) deficiency (CEAD), the cause of a disabling myasthenic syndrome, arises from defects in the COLQ gene, which encodes the AChE triple-helical collagenlike-tail subunit that anchors catalytic subunits of AChE to the synaptic basal lamina. Here we describe a patient with CEAD with a nonsense mutation (R315X) and a splice-donor-site mutation at position +3 of intron 16 (IVS16+3A-->G) of COLQ. Because both A and G are consensus nucleotides at the +3 position of splice-donor sites, we constructed a minigene that spans exons 15-17 and harbors IVS16+3A-->G for expression in COS cells. We found that the mutation causes skipping of exon 16. The mutant splice-donor site of intron 16 harbors five discordant nucleotides (at -3, -2, +3, +4, and +6) that do not base-pair with U1 small-nuclear RNA (snRNA), the molecule responsible for splice-donor-site recognition. Versions of the minigene harboring, at either +4 or +6, nucleotides complementary to U1 snRNA restore normal splicing. Analysis of 1,801 native splice-donor sites reveals that presence of a G nucleotide at +3 is associated with preferential usage, at positions +4 to +6, of nucleotides concordant to U1 snRNA. Analysis of 11 disease-associated IVS+3A-->G mutations indicates that, on average, two of three nucleotides at positions +4 to +6 fail to base-pair, and that the nucleotide at +4 never base-pairs, with U1 snRNA. We conclude that, with G at +3, normal splicing generally depends on the concordance that residues at +4 to +6 have with U1 snRNA, but other cis-acting elements may also be important in assuring the fidelity of splicing.  (+info)

A novel property of the RecA nucleoprotein filament: activation of double- stranded DNA for strand exchange in trans. (52/2613)

RecA protein catalyzes DNA strand exchange, a basic step of homologous recombination. Upon binding to single-stranded DNA (ssDNA), RecA protein forms a helical nucleoprotein filament. Normally, this nucleoprotein filament binds double-stranded DNA (dsDNA) and promotes exchange of base pairs between this dsDNA and the homologous ssDNA that is contained within this filament. Here, we demonstrate that this bound dsDNA can be activated by interaction with a heterologous RecA nucleoprotein filament for a novel type of strand exchange with homologous ssDNA that is external to, and, therefore, not within, the filament. We refer to this novel DNA strand exchange as being in trans. Thus, the RecA nucleoprotein filament is a protein scaffold that activates dsDNA for strand exchange with ssDNA either within the filament or external to it. This new property demonstrates that the RecA nucleoprotein filament makes dsDNA receptive for DNA strand exchange, and it defines an early step of the homology recognition mechanism.  (+info)

Base pairing between U3 small nucleolar RNA and the 5' end of 18S rRNA is required for pre-rRNA processing. (53/2613)

The loop of a stem structure close to the 5' end of the 18S rRNA is complementary to the box A region of the U3 small nucleolar RNA (snoRNA). Substitution of the 18S loop nucleotides inhibited pre-rRNA cleavage at site A(1), the 5' end of the 18S rRNA, and at site A(2), located 1.9 kb away in internal transcribed spacer 1. This inhibition was largely suppressed by a compensatory mutation in U3, demonstrating functional base pairing. The U3-pre-rRNA base pairing is incompatible with the structure that forms in the mature 18S rRNA and may prevent premature folding of the pre-rRNA. In the Escherichia coli pre-rRNA the homologous region of the 16S rRNA is also sequestered, in that case by base pairing to the 5' external transcribed spacer (5' ETS). Cleavage at site A(0) in the yeast 5' ETS strictly requires base pairing between U3 and a sequence within the 5' ETS. In contrast, the U3-18S interaction is not required for A(0) cleavage. U3 therefore carries out at least two functionally distinct base pair interactions with the pre-rRNA. The nucleotide at the site of A(1) cleavage was shown to be specified by two distinct signals; one of these is the stem-loop structure within the 18S rRNA. However, in contrast to the efficiency of cleavage, the position of A(1) cleavage is not dependent on the U3-loop interaction. We conclude that the 18S stem-loop structure is recognized at least twice during pre-rRNA processing.  (+info)

Structural equivalence in the transcribed spacers of pre-rRNA transcripts in Schizosaccharomyces pombe. (54/2613)

The structure of the internal transcribed spacer 2 (ITS2) in Schizosaccharomyces pombe was re-evaluated with respect to phylogenetically conserved features in yeasts, features in other transcribed spacer regions as well as the binding of transacting factors which potentially play a role in ribosomal maturation. Computer analyses and probes for nuclease protection indicate a very simple core structure consisting of a single extended hairpin which includes the interacting termini of the mature 5.8S and 25S rRNAs. Comparisons with ITS2 sequences in greatly diverging organisms indicate that the same feature also can be recognized. This is especially clear in organisms that contain very short sequences in which the putative structures are much less ambiguous. Diversity between organisms is the result of changes in hairpin length as well as the addition of branched helices. Protein binding and gel retardation studies with the S.pombe ITS2 further indicate that, as observed in the 3" external transcribed spacer (ETS) and ITS1 regions, the extended hairpin is not only the site of intermediate RNA cleavage during rRNA processing but also a site for specific interactions with one or more soluble factors. Taken together with other analyses on transcribed spacer regions, the present data suggest that the spacer regions all may act in a similar fashion, not only to organize the maturing terminal sequences, but also serve to organize specific soluble factors possibly acting with snoRNAs or in a manner which is analogous with that of the free snoRNPs.  (+info)

Direct identification of NH...N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy. (55/2613)

It is shown that the recently developed quantitative J(NN)HNN-COSY experiment can be used for the direct identification of hydrogen bonds in non-canonical base pairs in RNA. Scalar(2h)J(NN)couplings across NH.N hydrogen bonds are observed in imino hydrogen bonded GA base pairs of the hpGA RNA molecule, which contains a tandem GA mismatch, and in the reverse Hoogsteen AU base pairs of the E-loop of Escherichia coli 5S rRNA. These scalar couplings correlate the imino donor(15)N nucleus of guanine or uridine with the acceptor N1 or N7 nucleus of adenine. The values of the corresponding(2h)J(NN)coupling constants are similar in size to those observed in Watson-Crick base pairs. The reverse Hoogsteen base pairs could be directly detected for the E-loop of E.coli 5S rRNA both in the free form and in a complex with the ribosomal protein L25. This supports the notion that the E-loop is a pre-folded RNA recognition site that is not subject to significant induced conformational changes. Since Watson-Crick GC and AU base pairs are also readily detected the HNN-COSY experiment provides a useful and sensitive tool for the rapid identification of RNA secondary structure elements.  (+info)

A molecular model for RecA-promoted strand exchange via parallel triple-stranded helices. (56/2613)

A number of studies have concluded that strand exchange between a RecA-complexed DNA single strand and a homologous DNA duplex occurs via a single-strand invasion of the minor groove of the duplex. Using molecular modeling, we have previously demonstrated the possibility of forming a parallel triple helix in which the single strand interacts with the intact duplex in the minor groove, via novel base interactions (Bertucat et al., J. Biomol. Struct. Dynam. 16:535-546). This triplex is stabilized by the stretching and unwinding imposed by RecA. In the present study, we show that the bases within this triplex are appropriately placed to undergo strand exchange. Strand exchange is found to be exothermic and to result in a triple helix in which the new single strand occupies the major groove. This structure, which can be equated to so-called R-form DNA, can be further stabilized by compression and rewinding. We are consequently able to propose a detailed, atomic-scale model of RecA-promoted strand exchange. This model, which is supported by a variety of experimental data, suggests that the role of RecA is principally to prepare the single strand for its future interactions, to guide a minor groove attack on duplex DNA, and to stabilize the resulting, stretched triplex, which intrinsically favors strand exchange. We also discuss how this mechanism can incorporate homologous recognition.  (+info)