Coenonia anatina gen. nov., sp. nov., a novel bacterium associated with respiratory disease in ducks and geese. (41/7084)

Taxon 1502 was originally described as a Riemerella anatipestifer-like bacterium causing exudative septicaemia in ducks and geese. In the present study, an integrated genotypic and phenotypic approach was used to elucidate the phylogenetic affiliation and taxonomic relationships of 12 strains of taxon 1502. Whole-cell protein and fatty acid analyses and an extensive biochemical examination by using conventional tests and several API microtest systems indicated that all isolates formed a homogeneous taxon, which was confirmed by DNA-DNA hybridizations. 16S rDNA sequence analysis of a representative strain (LMG 14382T) indicated that this taxon belongs to the Cytophaga-Flavobacterium-Bacteroides phylum and revealed a moderate but distinct relationship to species of the genus Capnocytophaga (overall 16S rDNA sequence identities were 88.8-90.2%). Taxon 1502 is concluded to represent a single species that should be allocated to a novel genus, and the name Coenonia anatina gen. nov., sp. nov. is proposed. The DNA G + C content of representative strains was 35-36 mol% and the type strain is LMG 14382T.  (+info)

Thiomicrospira chilensis sp. nov., a mesophilic obligately chemolithoautotrophic sulfuroxidizing bacterium isolated from a Thioploca mat. (42/7084)

A new member of the genus Thiomicrospira, which utilizes thiosulfate as the electron donor and CO2 as the carbon source, was isolated from a sediment sample dominated by the filamentous sulfur bacterium Thioploca. Although the physiological properties investigated are nearly identical to other described species of the genus, it is proposed that strain Ch-1T is a member of a new species, Thiomicrospira chilensis sp. nov., on the basis of differences in genotypic characteristics (16S rRNA sequence, DNA homology, G + C content). Strain Ch-1T was highly motile with a slight tendency to form aggregates in the stationary growth phase. The organism was obligately autotrophic and strictly aerobic. Nitrate was not used as an electron acceptor. Chemolithoautotrophic growth was observed with thiosulfate, tetrathionate, sulfur and sulfide. The isolate was not able to grow heterotrophically. Growth of strain Ch-1T was observed between pH 5.3 and 8.5 with an optimum at pH 7.0. The temperature range for growth was between 3.5 and 42 degrees C; the optimal growth temperature was between 32 and 37 degrees C. The mean maximum growth rate on thiosulfate was 0.4 h-1. This is the second Thiomicrospira species described that has a rod-shaped morphology; therefore discrimination between vibrio-shaped Thiomicrospira and rod-shaped Thiobacilli is no longer valid.  (+info)

Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov. (43/7084)

An aerobic bacterium, strain BN12T, which degrades substituted naphthalenesulfonates and substituted salicylates was isolated from a 6-aminonaphthalene-2-sulfonate-degrading microbial consortium originating from the River Elbe, Germany. Chemotaxonomic investigations of quinones, polyamines and polar lipids allowed allocation of this strain to the alpha-subclass of the Proteobacteria and revealed similarity to species of the genera Aminobacter, Chelatobacter and Mesorhizobium. This was confirmed by typing with 16S rRNA-targeted oligonucleotide probes and 16S rDNA sequencing and phylogenetic analysis, indicating that BN12T clusters most closely with a strain 'Thiobacillus' THI 051T and with the above genera but comprising a separate branch. DNA-DNA hybridizations demonstrated that strain BN12T is different from all species of Aminobacter currently described and recognized. The fatty acid patterns, substrate utilization profile and biochemical characteristics displayed no obvious similarity to the characteristics of Aminobacter and Chelatobacter species. 'Thiobacillus' THI 051T, however, revealed phenotypic similarities to BN12T. Furthermore, 16S rRNA sequences of Chelatobacter heintzii showed a high similarity to the 16S rRNA sequences of all currently recognized Aminobacter species. On the basis of these and previously published results, the new genus Pseudaminobacter is proposed, harbouring the two new species Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov. The type strains are BN12T (= DSM 6986T) and THI 051T (= IFO 14570T), respectively.  (+info)

Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai) (44/7084)

A novel pathogen from Asian pears (Pyrus pyrifolia Nakai) was analysed by sequencing the 16S rDNA and the adjacent intergenic region, and the data were compared to related Enterobacteriaceae. The 16S rDNA of the Asian pear pathogen was almost identical with the sequence of Erwinia amylovora, in contrast to the 16S-23S rRNA intergenic transcribed spacer region of both species. A dendrogram was deduced from determined sequences of the spacer regions including those of several related species such as Erwinia amylovora, Enterobacter pyrinus, Pantoea stewartii subsp. stewartii and Escherichia coli. Dendrograms derived from 121 biochemical characteristics including Biotype 100 data placed the Asian pear pathogen close to Erwinia amylovora and more distantly to other members of the species Erwinia and to the species Pantoea and Enterobacter. Another DNA relatedness study was performed by DNA hybridizations and estimation of delta Tm values. The Asian pear strains constituted a tight DNA hybridization group (89-100%) and were barely related to strains of Erwinia amylovora (40-50%) with a delta Tm in the range of 5.2-6.8. The G + C content of DNA from the novel pathogen is 52 mol%. Therefore, it is proposed that strains isolated from Asian pears constitute a new species and the name Erwinia pyrifoliae is suggested; the type strain is strain Ep 16/96T (= CFBP 4172T = DSM 12163T).  (+info)

In vitro selection of integration host factor binding sites. (45/7084)

Integration host factor (IHF) is a bacterial protein that binds and severely bends a specific DNA target. IHF binding sites are approximately 30 to 35 bp long and are apparently divided into two domains. While the 3' domain is conserved, the 5' domain is degenerate but is typically AT rich. As a result of physical constraints that IHF must impose on DNA in order to bind, it is believed that this 5' domain must possess structural characteristics conducive for both binding and bending with little regard for specific contacts between the protein and the DNA. We have examined the sequence requirements of the 5' binding domain of the IHF binding target. Using a SELEX procedure, we randomized and selected variants of a natural IHF site. We then analyzed these variants to determine how the 5' binding domain affects the structure, affinity, and function of an IHF-DNA complex in a native system. Despite finding individual sequences that varied over 100-fold in affinity for IHF, we found no apparent correlation between affinity and function.  (+info)

Complete sequence, gene arrangement, and genetic code of mitochondrial DNA of the cephalochordate Branchiostoma floridae (Amphioxus) (46/7084)

We have determined the 15,083-nucleotide (nt) sequence of the mitochondrial DNA (mtDNA) of the lancelet Branchiostoma floridae (Chordata: Cephalochordata). As is typical in metazoans, the mtDNA encodes 13 protein, 2 rRNA, and 22 tRNA genes. The gene arrangement differs from the common vertebrate arrangement by only four tRNA gene positions. Three of these are unique to Branchiostoma, but the fourth is in a position that is primitive for chordates. It shares the genetic code variations found in vertebrate mtDNAs except that AGA = serine, a code variation found in many invertebrate phyla but not in vertebrates (the related codon AGG was not found). Branchiostoma mtDNA lacks a vertebrate-like control region; its largest noncoding region (129 nt) is unremarkable in sequence or base composition, and its location between ND5 and tRNAG differs from that usually found in vertebrates. It also lacks a potential hairpin DNA structure like those found in many (though not in all) vertebrates to serve as the second-strand (i.e., L-strand) origin of replication. Perhaps related to this, the sequence corresponding to the DHU arm of tRNAC cannot form a helical stem, a condition found in a few other vertebrate mtDNAs that also lack a canonical L-strand origin of replication. ATG and GTG codons appear to initiate translation in 11 and 2 of the protein-encoding genes, respectively. Protein genes end with complete (TAA or TAG) or incomplete (T or TA) stop codons; the latter are presumably converted to TAA by post-transcriptional polyadenylation.  (+info)

Cis-acting modifiers of expanded CAG/CTG triplet repeat expandability: associations with flanking GC content and proximity to CpG islands. (47/7084)

An increasing number of human genetic disorders are associated with the expansion of trinucleotide repeats. The majority of these diseases are associated with CAG/CTG expansions, including Huntington's disease, myotonic dystrophy and many of the spinocerebellar ataxias. Recently, two new expanded CAG/CTG repeats have been identified that are not associated with a phenotype. Expanded alleles at all of these loci are unstable, with frequent length changes during intergenerational transmission. However, variation in the relative levels of instability, and the size and direction of the length change mutations observed, between the CAG/CTG loci is apparent. We have quantified these differences, taking into account effects of progenitor allele length, by calculating the relative expandability of each repeat. Since the repeat motifs are the same, these differences must be a result of flanking sequence modifiers. We present data that indicate a strong correlation between the relative expandability of these repeats and the flanking GC content. Moreover, we demonstrate that the most expandable loci are all located within CpG islands. These data provide the first insights into the molecular bases of cis -acting flanking sequences modifying the relative mutability of dispersed expanded human triplet repeats.  (+info)

G+C content variation along and among Saccharomyces cerevisiae chromosomes. (48/7084)

Past analyses of the genome of the yeast Saccharomyces cerevisiae have revealed substantial regional variation in G+C content. Important questions remain, though, as to the origin, nature, significance, and generality of this variation. We conducted an extensive analysis of the yeast genome to try to answer these questions. Our results indicate that open reading frames (ORFs) with similar G+C contents at silent codon positions are significantly clustered on chromosomes. This clustering can be explained by very short range correlations of silent-site G+C contents at neighboring ORFs. ORFs of high silent-site G+C content are disproportionately concentrated on shorter chromosomes, which causes a negative relationship between chromosome length and G+C content. Contrary to previous reports, there is no correlation between gene density and silent-site G+C content in yeast. Chromosome III is atypical in many regards, and possible reasons for this are discussed.  (+info)