Seroepidemiology of Bartonella vinsonii subsp. berkhoffii infection in California coyotes, 1994-1998. (17/315)

The prevalence of antibodies to Bartonella vinsonii subsp. berkhoffii in coyotes (Canis latrans) in California ranged from 51% in central to 34% in southern and 7% in northern California. Seropositive coyotes were more likely to be from coastal than inland counties (p clustered distribution of Bartonella seropositivity in coyotes suggests that B. vinsonii subsp. berkhoffii infection is vectorborne. Further investigation is warranted to evaluate which arthropods are vectors and what the mode of transmission is from wildlife to domestic dogs and possibly humans.  (+info)

Bartonella vinsonii subsp. berkhoffii and related members of the alpha subdivision of the Proteobacteria in dogs with cardiac arrhythmias, endocarditis, or myocarditis. (18/315)

Cardiac arrhythmias, endocarditis, or myocarditis was identified in 12 dogs, of which 11 were seroreactive to Bartonella vinsonii subspecies berkhoffii antigens. Historical abnormalities were highly variable but frequently included substantial weight loss, syncope, collapse, or sudden death. Fever was an infrequently detected abnormality. Cardiac disease was diagnosed following an illness of short duration in most dogs, but a protracted illness of at least 6 months' duration was reported for four dogs. Valvular endocarditis was diagnosed echocardiographically or histologically in eight dogs, two of which also had moderate to severe multifocal myocarditis. Four dogs lacking definitive evidence of endocarditis were included because of seroreactivity to B. vinsonii antigens and uncharacterized heart murmurs and/or arrhythmias. Alpha proteobacteria were not isolated from the blood by either conventional or lysis centrifugation blood culture techniques. Using PCR amplification and DNA sequencing of a portion of the 16S rRNA gene, B. vinsonii was identified in the blood or heart valves of three dogs. DNA sequence alignment of PCR amplicons derived from blood or tissue samples from seven dogs clustered among members of the alpha subdivision of the Proteobacteria and suggested the possibility of involvement of one or more alpha proteobacteria; however, because of the limited quantity of sequence, the genus could not be identified. Serologic or molecular evidence of coinfection with tick-transmitted pathogens, including Ehrlichia canis, Babesia canis, Babesia gibsonii, or spotted fever group rickettsiae, was obtained for seven dogs. We conclude that B. vinsonii subsp. berkhoffii and closely related species of alpha proteobacteria are an important, previously unrecognized cause of arrhythmias, endocarditis, myocarditis, syncope, and sudden death in dogs.  (+info)

Demonstration of Bartonella grahamii DNA in ocular fluids of a patient with neuroretinitis. (19/315)

We describe the clinical and laboratory features of a 55-year-old human immunodeficiency virus-negative female patient who presented with bilateral intraocular inflammatory disease (neuroretinitis type) and behavioral changes caused by a Bartonella grahamii infection. Diagnosis was based on the PCR analysis of DNA extracted from the intraocular fluids. DNA analysis of the PCR product revealed a 100% identity with the 16S rRNA gene sequence of B. grahamii. The patient was successfully treated with doxycycline (200 mg/day) and rifampin (600 mg/day) for 4 weeks. This is the first report that demonstrates the presence of a Bartonella species in the intraocular fluids of a nonimmunocompromised patient and that indicates that B. grahamii is pathogenic for humans.  (+info)

Identification of Bartonella species directly in clinical specimens by PCR-restriction fragment length polymorphism analysis of a 16S rRNA gene fragment. (20/315)

It is now established that two species of Bartonella, namely, Bartonella henselae and B. quintana, cause bacillary angiomatosis in human immunodeficiency virus-infected patients. In addition, B. henselae causes cat scratch disease and B. quintana, B. henselae, and B. elizabethae can cause bacteremia and endocarditis in immunocompetent persons. We have developed a PCR-restriction fragment length polymorphism-based assay for direct detection and identification to species level of Bartonella in clinical specimens. This is accomplished by PCR amplification of Bartonella DNA using primers derived from conserved regions of the gene carrying the 16S ribosomal DNA, followed by restriction analysis using DdeI and MseI restriction endonucleases. We amplified a Bartonella genus-specific 296-bp fragment from 25 clinical samples obtained from 25 different individuals. Restriction analysis of amplicons showed that identical patterns were seen from digestion of B. henselae and B. quintana amplicons with DdeI, whereas a different unique pattern was seen by using the same enzyme with B. vinsonii and B. elizabethae. With MseI digestion, B. henselae and B. vinsonii gave nearly identical patterns while B. quintana and B. elizabethae gave a different pattern. By combining the restriction analysis data generated with MseI and DdeI, unique "signature" restriction patterns characteristic for each species were obtained. These patterns were useful in identifying the Bartonella species associated with each tissue specimen.  (+info)

Sonicated diagnostic immunoblot for bartonellosis. (21/315)

Two simple Bartonella bacilliformis immunoblot preparation methods were developed. Antigen was prepared by two different methods: sonication of whole organisms or glycine extraction. Both methods were then tested for sensitivity and specificity. Well-defined control sera were utilized in the development of these diagnostic immunoblots, and possible cross-reactions were thoroughly examined. Sera investigated for cross-reaction with these diagnostic antigens were drawn from patients with brucellosis, chlamydiosis, Q fever, and cat scratch disease, all of whom were from regions where bartonellosis is not endemic. While both immunoblots yielded reasonable sensitivity and high specificity, we recommend the use of the sonicated immunoblot, which has a higher sensitivity when used to detect acute disease and produces fewer cross-reactions. The sonicated immunoblot reported here is 94% sensitive to chronic bartonellosis and 70% sensitive to acute bartonellosis. In a healthy group, it is 100% specific. This immunoblot preparation requires a simple sonication protocol for the harvesting of B. bacilliformis antigens and is well suited for use in regions of endemicity.  (+info)

Species-specific monoclonal antibodies for rapid identification of Bartonella quintana. (22/315)

Seven species-specific monoclonal antibodies (MAbs) to Bartonella quintana were produced and characterized. The MAbs were of the immunoglobulin G class and reacted only with 13 B. quintana strains in indirect microimmunofluorescence and Western immunoblotting assays. They did not react with eight other Bartonella spp., including Bartonella henselae, the most closely related species, and a selected MAb did also not react with nine other strains of gram-negative bacteria. The MAbs reacted mainly with a 34-kDa protein epitope of B. quintana which was shown to be species specific by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Four of five body lice experimentally infected with B. quintana were found to be positive for the organism in microimmunofluorescence assays with one MAb. These MAbs may provide a specific, simple, rapid, and low-cost tool for the identification of B. quintana and the diagnosis of infections due to the microorganism.  (+info)

Conservation of the 17-kilodalton antigen gene within the genus Bartonella. (23/315)

The 17-kDa antigen of Bartonella henselae has previously been shown to elicit a strong humoral immune response in patients with cat scratch disease (CSD) and to be useful in screening human serum samples for CSD. In this study, PCR amplification of genes homologous to the 17-kDa antigen gene of B. henselae was performed using genomic DNAs from several species of Bartonella, including the currently recognized human pathogens. Amplicons of similar size were demonstrated using the following chromosomal DNA templates: B. henselae (two strains), B. quintana (two strains), B. elizabethae, B. clarridgeiae, B. vinsonii subsp. vinsonii, and B. vinsonii subsp. berkhoffii. No evidence of a B. bacilliformis homolog of the 17-kDa antigen gene was obtained using multiple primer pairs. DNA sequencing revealed open reading frames capable of coding for proteins with sizes similar to that of the 17-kDa antigen of B. henselae in all of the amplicons; however, extensive sequence divergence across the genus was noted. Cloning of the amplified products into pUC19 resulted in recombinants that directed synthesis of homologs of the 17-kDa protein. Immunoblot analysis using human sera from CSD cases demonstrated very little cross-reactivity among different species for this protein. In contrast, immunoblots using rabbit serum raised to the recombinant B. henselae antigen showed extensive cross-reactivity with the proteins of other Bartonella species. The data suggest that the use of the 17-kDa antigen as a serologic reagent may allow the development of more specific diagnostic assays. Furthermore, the nucleotide sequences from the various versions of the 17-kDa antigen gene should be useful for rapid identification of Bartonella at the species level.  (+info)

In vitro susceptibilities of Rickettsia and Bartonella spp. to 14-hydroxy-clarithromycin as determined by immunofluorescent antibody analysis of infected vero cell monolayers. (24/315)

The in vitro susceptibilities of Rickettsia akari, Rickettsia conorii, Rickettsia prowazekii, Rickettsia rickettsii, Bartonella elizabethae, Bartonella henselae and Bartonella quintana to different concentrations of clarithromycin, 14-hydroxy-clarithromycin (the primary metabolite of clarithromycin) and tetracycline in Vero cell cultures, were determined by enumeration of immunofluorescently-stained bacilli. The extent of antibiotic-induced inhibition of foci was recorded for each dilution of antibiotic and compared with an antibiotic-negative control. Based upon MIC data, clarithromycin alone is highly active against all three Bartonella spp., R. akari and R. prowazekii, while 14-hydroxy-clarithromycin is active against R. conorii, R. prowazekii and R. rickettsii. Further testing is warranted in animal models and human clinical trials, to examine the activity of both clarithromycin and its primary metabolite and to define further the role of clarithromycin in therapy, particularly of infections caused by obligate intracellular bacteria such as Rickettsia and Bartonella spp.  (+info)