Characterization of a sodium deoxycholate-activatable proteinase activity associated with betaA3/A1-crystallin of human lenses. (73/2544)

A human lens proteinase was purified by a five-step procedure that included two consecutive size-exclusion agarose A 1.5 m chromatographies, a preparative non-denaturing gel-electrophoretic separation, HPLC on a size-exclusion column (TSK G-3000 PW(XL)) followed by preparative isoelectric focusing. A 2300-fold purified enzyme showed a major band of 22 kDa during SDS-PAGE, a pH optimum of 7.8, pI between 4.5 and 5.0, a loss of activity above 45 degrees C and a serine type nature. The partial N-terminal sequence of the enzyme, i.e. P-M-P-G-S-L-G-P-W, matched with the sequence of human lens betaA3/A1-crystallin starting at residue No. 23. Based on the Western blot results of the enzyme with five different site-specific polyclonal antibodies raised against betaA3/A1-crystallin, it was concluded that the 22 kDa crystallin enzyme had a cleaved N-terminus but an intact C-terminus. The betaA3/A1-crystallin, isolated from human lenses, also exhibited proteinase activity following detergent activation and size-exclusion chromatography. The mouse recombinant betaA3/A1-crystallin proteinase was purified by the above five-step procedure, from a homogenate of Sf-9 cells transfected with baculovirus containing the full length coding sequence of betaA3/A1-crystallin. The mouse 22 kDa species also exhibited proteinase activity and immunoreactivity with anti-betaA3/A1-C-terminal antibody. Together, the data suggest that a truncated species of betaA3/A1-crystallin exhibits proteinase activity.  (+info)

Tapasin enhances assembly of transporters associated with antigen processing-dependent and -independent peptides with HLA-A2 and HLA-B27 expressed in insect cells. (74/2544)

Assembly of HLA class I-peptide complexes is assisted by multiple proteins that associate with HLA molecules in loading complexes. These include the housekeeping chaperones calnexin and calreticulin and two essential proteins, the transporters associated with antigen processing (TAP) for peptide supply, and the protein tapasin which is thought to act as a specialized chaperone. We dissected functional effects of processing cofactors by co-expressing in insect cells various combinations of the human proteins HLA-A2, HLA-B27, beta(2)-microglobulin, TAP, calnexin, calreticulin, and tapasin. Stability at 37 degrees C and surface expression of class I dimers correlated closely in baculovirus-infected Sf9 cells, suggesting that these cells retain empty dimers in the endoplasmic reticulum. Both HLA molecules form substantial quantities of stable complexes with insect cell-produced peptide pools. These pools are TAP-selected cytosolic peptides for HLA-B27 but endoplasmic reticulum-derived, i.e. TAP-independent peptides for HLA-A2. This discrepancy may be due to peptide selection by human TAP which is much better adapted to the HLA-B27 than to the HLA-A2 ligand preferences. HLA class I assembly with peptides from TAP-dependent and -independent pools was enhanced strongly by tapasin. Thus, tapasin acts as a chaperone and/or peptide editor that facilitates assembly of peptides with HLA class I molecules independently of mediating their interaction with TAP and/or retention in the endoplasmic reticulum.  (+info)

The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin. (75/2544)

The Bacillus thuringiensis CryIAa toxin binds a cadherin-like protein (BtR175) on the brush-border membranes of the Bombyx mori midgut columnar cells, which are the targets. By introducing the BtR175 gene with a baculovirus, Spodoptera frugiperda Sf9 cells expressed BtR175 protein on the cell membrane and became susceptible to the CryIAa toxin. The toxin bound the cadherin repeat adjacent to the membrane and made a pore that passed inorganic ions, causing the cell to swell and burst. This was not observed with a BtR175 variant lacking the toxin-binding site. This in vitro experiment mimicked the specific insecticidal action of the toxin in vivo well.  (+info)

Expression of genes coding for animal virus glycoproteins in heterologous systems. (76/2544)

The outermost layers of animal viruses are usually composed of glycoproteins. They are responsible not only for the entrance of viruses into, and release from host cells but also for the initial interaction of a viral particle with immunological defense of the host. It is therefore not surprising that many laboratories devote a lot of effort to study viral glycoproteins at the molecular level. Very often such studies are possible only after the introduction of a glycoprotein gene into a heterologous system. Expression of glycoprotein genes is usually obtained in mammalian or insect cells. Expression in mammalian cells yields viral glycoproteins with glycan chains indistinguishable from the original counterparts in virion particles but the level of synthesis of glycoproteins is very low. Vaccinia virus is the most common vector for expression in mammalian cells. It is easy to grow, the introduction of foreign genes is relatively simple and, due to the size of the vaccinia genome, it can accept large pieces of foreign DNA. Glycosylation in insect cells is not as complex as in mammalian cells and usually glycoproteins produced in insect cells are of slightly lower molecular mass than those produced in mammalian cells. The most common vector for expression of glycoproteins in insect cells is a baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV). The great advantage of this system is a very high level of expression of foreign genes.  (+info)

Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. (77/2544)

A method is described to express and purify human DNA (cytosine-5) methyltransferase (human DNMT1) using a protein splicing (intein) fusion partner in a baculovirus expression vector. The system produces approximately 1 mg of intact recombinant enzyme >95% pure per 1.5 x 10(9) insect cells. The protein lacks any affinity tag and is identical to the native enzyme except for the two C-terminal amino acids, proline and glycine, that were substituted for lysine and aspartic acid for optimal cleavage from the intein affinity tag. Human DNMT1 was used for steady-state kinetic analysis with poly(dI-dC).poly(dI-dC) and unmethylated and hemimethylated 36- and 75-mer oligonucleotides. The turnover number (k(cat)) was 131-237 h(-1) on poly(dI-dC).poly(dI-dC), 1.2-2.3 h(-1) on unmethylated DNA, and 8.3-49 h(-1) on hemimethylated DNA. The Michaelis constants for DNA (K(m)(CG)) and S-adenosyl-L-methionine (AdoMet) (K(m)(AdoMet)) ranged from 0.33-1.32 and 2.6-7.2 microM, respectively, whereas the ratio of k(cat)/K(m)(CG) ranged from 3.9 to 44 (237-336 for poly(dI-dC).poly(dI-dC)) x 10(6) M(-1) h(-1). The preference of the enzyme for hemimethylated, over unmethylated, DNA was 7-21-fold. The values of k(cat) on hemimethylated DNAs showed a 2-3-fold difference, depending upon which strand was pre-methylated. Furthermore, human DNMT1 formed covalent complexes with substrates containing 5-fluoro-CNG, indicating that substrate specificity extended beyond the canonical CG dinucleotide. These results show that, in addition to maintenance methylation, human DNMT1 may also carry out de novo and non-CG methyltransferase activities in vivo.  (+info)

The physical association and phosphorylation of Cdc25C protein phosphatase by Prk. (78/2544)

prk encodes a protein serine/threonine kinase involved in regulating M phase functions during the cell cycle. We have expressed His6-Prk and His6-Cdc25C proteins using the baculoviral vector expression system. Purified recombinant His6-Prk, but not a kinase-defective mutant His6-PrkK52R, is capable of strongly phosphorylating His6-Cdc25C in vitro. Co-immunoprecipitation and affinity column chromatography experiments demonstrate that GST-Prk and native Cdc25C interact. When co-infected with His6-Prk and His6-Cdc25C recombinant baculoviruses, sf-9 cells produce His6-Cdc25C antigen with an additional slower mobility band on denaturing polyacrylamide gels compared with cells infected with His6-Cdc25C baculovirus alone. In addition, His6-Cdc25C immunoprecipitated from sf-9 cells co-infected with His6-Prk and His6-Cdc25C baculoviruses, but not with His6-PrkK52R and His6-Cdc25C baculoviruses, contains a greatly enhanced kinase activity that phosphorylates His6-Cdc25C in vitro. Moreover, phosphopeptide mapping shows that His6-Prk phosphorylates His6-Cdc25C at two sites in vitro and that the major phosphorylation site co-migrates with the one that is phosphorylated in vivo in asynchonized cells. Further studies reveal that His6-Prk phosphorylates Cdc25C on serine216, a residue also phosphorylated by Chk1 and Chk2. Together, these observations strongly suggest that Prk's role in mitosis is at least partly mediated through direct regulation of Cdc25C.  (+info)

The major neutralizing antigenic site on herpes simplex virus glycoprotein D overlaps a receptor-binding domain. (79/2544)

Herpes simplex virus (HSV) entry is dependent on the interaction of virion glycoprotein D (gD) with one of several cellular receptors. We previously showed that gD binds specifically to two structurally dissimilar receptors, HveA and HveC. We have continued our studies by using (i) a panel of baculovirus-produced gD molecules with various C-terminal truncations and (ii) a series of gD mutants with nonoverlapping 3-amino-acid deletions between residues 222 and 254. Binding of the potent neutralizing monoclonal antibody (MAb) DL11 (group Ib) was unaffected in forms of gD containing residues 1 to 250 but was greatly diminished in molecules truncated at residue 240 or 234. Both receptor binding and blocking of HSV infection were also affected by these C-terminal truncations. gD-1(234t) bound weakly to both HveA and HveC as determined by enzyme-linked immunosorbent assay (ELISA) and failed to block infection. Interestingly, gD-1(240t) bound well to both receptors but blocked infection poorly, indicating that receptor binding as measured by ELISA is not the only gD function required for blocking. Optical biosensor studies showed that while gD-1(240t) bound HveC with an affinity similar to that of gD-1(306t), the rates of complex formation and dissociation were significantly faster than for gD-1(306t). Complementation analysis showed that any 3-amino-acid deletion between residues 222 and 251 of gD resulted in a nonfunctional protein. Among this set of proteins, three had lost DL11 reactivity (those with deletions between residues 222 and 230). One of these proteins (deletion 222-224) was expressed as a soluble form in the baculovirus system. This protein did not react with DL11, bound to both HveA and HveC poorly as shown by ELISA, and failed to block HSV infection. Since this protein was bound by several other MAbs that recognize discontinuous epitopes, we conclude that residues 222 to 224 are critical for gD function. We propose that the potent virus-neutralizing activity of DL11 (and other group Ib MAbs) likely reflects an overlap between its epitope and a receptor-binding domain of gD.  (+info)

Large-scale expression and purification of the human vitamin D receptor and its ligand-binding domain for structural studies. (80/2544)

We have expressed recombinant human vitamin D receptor and its ligand-binding domain in Spodoptera frugiperda (Sf9) insect cells with a 30-litre bioreactor. Both proteins were purified to apparent homogeneity with yields of 0.5-3.5 mg/l. Gel-filtration analyses indicated that the purified human vitamin D receptor and its ligand-binding domain were present as monomers in solution. The purified vitamin D receptor and its ligand-binding domain were demonstrated to bind 1alpha,25-dihydroxyvitamin D(3) with high affinity, the K(d) values ranging from 0.9 to 1.2 nM. Neutron scattering studies of the ligand-binding domain demonstrated that the samples are homogeneous and contain monomeric species of polypeptides. The purified vitamin D receptor binds to the vitamin D response elements of osteopontin and osteocalcin genes as a homodimer or as a heterodimer with the retinoid X receptor-alphaDeltaAB and we were able to purify these complexes in quantities sufficient for crystallization studies. The results indicate that we can produce biologically active human vitamin D receptor and its ligand-binding domain in insect cells and purify them for functional and structural studies.  (+info)