Phylogenetic position of Chitinophaga pinensis in the Flexibacter-Bacteroides-Cytophaga phylum. (1/434)

Comparison of the 16S rRNA gene sequence determined for Chitinophaga pinensis showed that this species is most closely related to Flexibacter filiformis in the Flexibacter-Bacteroides-Cytophaga phylum. These two chitinolytic bacteria, which are characterized by transformation into spherical bodies on ageing, belong to a strongly supported lineage that also includes Cytophaga arvensicola, Flavobacterium ferrugineum and Flexibacter sancti. The lineage is distinct from the microcyst-forming species Sporocytophaga myxococcoides.  (+info)

Coenonia anatina gen. nov., sp. nov., a novel bacterium associated with respiratory disease in ducks and geese. (2/434)

Taxon 1502 was originally described as a Riemerella anatipestifer-like bacterium causing exudative septicaemia in ducks and geese. In the present study, an integrated genotypic and phenotypic approach was used to elucidate the phylogenetic affiliation and taxonomic relationships of 12 strains of taxon 1502. Whole-cell protein and fatty acid analyses and an extensive biochemical examination by using conventional tests and several API microtest systems indicated that all isolates formed a homogeneous taxon, which was confirmed by DNA-DNA hybridizations. 16S rDNA sequence analysis of a representative strain (LMG 14382T) indicated that this taxon belongs to the Cytophaga-Flavobacterium-Bacteroides phylum and revealed a moderate but distinct relationship to species of the genus Capnocytophaga (overall 16S rDNA sequence identities were 88.8-90.2%). Taxon 1502 is concluded to represent a single species that should be allocated to a novel genus, and the name Coenonia anatina gen. nov., sp. nov. is proposed. The DNA G + C content of representative strains was 35-36 mol% and the type strain is LMG 14382T.  (+info)

Physicochemical parameters for growth of the sea ice bacteria Glaciecola punicea ACAM 611(T) and Gelidibacter sp. strain IC158. (3/434)

The water activity and pH ranges for growth of Glaciecola punicea (a psychrophile) were extended when this organism was grown at suboptimal rather than optimal temperatures. No such extension was observed for Gelidibacter sp. strain IC158 (a psychrotolerant bacterium) at analogous temperatures. Salinity and pH may be primary physicochemical parameters controlling bacterial community development in sea ice.  (+info)

Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. (4/434)

Bacterial community composition, enzymatic activities, and carbon dynamics were examined during diatom blooms in four 200-liter laboratory seawater mesocosms. The objective was to determine whether the dramatic shifts in growth rates and ectoenzyme activities, which are commonly observed during the course of phytoplankton blooms and their subsequent demise, could result from shifts in bacterial community composition. Nutrient enrichment of metazoan-free seawater resulted in diatom blooms dominated by a Thalassiosira sp., which peaked 9 days after enrichment ( approximately 24 microg of chlorophyll a liter(-1)). At this time bacterial abundance abruptly decreased from 2.8 x 10(6) to 0.75 x 10(6) ml(-1), and an analysis of bacterial community composition, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments, revealed the disappearance of three dominant phylotypes. Increased viral and flagellate abundances suggested that both lysis and grazing could have played a role in the observed phylotype-specific mortality. Subsequently, new phylotypes appeared and bacterial production, abundance, and enzyme activities shifted from being predominantly associated with the <1.0-microm size fraction towards the >1.0-microm size fraction, indicating a pronounced microbial colonization of particles. Sequencing of DGGE bands suggested that the observed rapid and extensive colonization of particulate matter was mainly by specialized alpha-Proteobacteria- and Cytophagales-related phylotypes. These particle-associated bacteria had high growth rates as well as high cell-specific aminopeptidase, beta-glucosidase, and lipase activities. Rate measurements as well as bacterial population dynamics were almost identical among the mesocosms indicating that the observed bacterial community dynamics were systematic and repeatable responses to the manipulated conditions.  (+info)

Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. (5/434)

Despite intensive studies of microbial-community diversity, the questions of which kinds of microbial populations are associated with changes in community diversity have not yet been fully solved by molecular approaches. In this study, to investigate the impact of livestock wastewater on changes in the bacterial communities in groundwater, bacterial communities in subsurface aquifers were analyzed by characterizing their 16S rDNA sequences. The similarity coefficients of restriction fragment length polymorphism (RFLP) patterns of the cloned 16S ribosomal DNAs showed that the bacterial communities in livestock wastewater samples were more closely related to those in contaminated aquifer samples. In addition, calculations of community diversity clearly showed that bacterial communities in the livestock wastewater and the contaminated aquifer were much more diverse than those in the uncontaminated aquifer. Thus, the increase in bacterial-community diversity in the contaminated aquifer was assumed to be due to the infiltration of livestock wastewater, containing high concentrations of diverse microbial flora, into the aquifer. Phylogenetic analysis of the sequences from a subset of the RFLP patterns showed that the Cytophaga-Flexibacter-Bacteroides and low-G+C gram-positive groups originating from livestock wastewater were responsible for the change in the bacterial community in groundwater. This was evidenced by the occurrence of rumen-related sequences not only in the livestock wastewater samples but also in the contaminated-groundwater samples. Rumen-related sequences, therefore, can be used as indicator sequences for fecal contamination of groundwater, particularly from livestock.  (+info)

Dyadobacter fermentans gen. nov., sp. nov., a novel gram-negative bacterium isolated from surface-sterilized Zea mays stems. (6/434)

A Gram-negative bacterium, designated NS114T, was isolated from duplicate treatments of surface-sterilized Zea mays stems. The plants were grown in synthetic soil under greenhouse conditions and watered with fertilizer containing no nitrogen. Strain NS114T could not be isolated from plants watered with the standard level or 20% (w/v) of the standard level of nitrogen. Cells occurred as pairs in young cultures that attached to form angled arrangements in R2A broth and occasionally formed rounded, horseshoe arrangements in YM broth. Cell variation resulted in flocculent chains of coccoid cells in old cultures. Strain NS114T fermented glucose and sucrose. The G + C content was 48 mol%. Phylogenetic analysis of the 16S rRNA gene showed that the strain was a member of the domain Bacteria and branched from a point equidistant from an aquatic organism, Runella slithyformis and a marine isolate, 'Microscilla furvescens'. Phenotypic and genotypic analyses indicated that strain NS114T could not be assigned to any recognized genus; therefore a new genus and species, Dyadobacter fermentans gen. nov., sp. nov., is proposed, for which NS114T is the type strain.  (+info)

Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. (7/434)

The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the alpha Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and delta Proteobacteria) were primarily found in deeper waters (200 to 500 m).  (+info)

Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. (8/434)

A group of strains with potent extracellular enzymic activity were isolated from the surfaces of the chain-forming sea-ice diatom Melosira and from an unidentified macrophyte collected from the Eastern Antarctic coastal zone. 16S rDNA sequence analysis indicated that the strains belonged to the genus Cellulophaga and showed greatest similarity to the species Cellulophaga baltica (sequence similarity 97%). Phenotypic characteristics, DNA base composition and DNA-DNA hybridization values clearly separate the Antarctic strains from Cellulophaga baltica and other Cellulophaga species. Thus, the strains form a distinct and novel species and have the proposed name Cellulophaga algicola sp. nov. (type strain IC166T = ACAM 630T). In addition, it was recognized that the species Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989, a species phylogenetically remote from the type species of the genus Cytophaga, possessed 16S rDNA sequences and phenotypic and chemotaxonomic traits similar to those of other Cellulophaga species. Thus, it was proposed that the species Cytophaga uliginosa be renamed as Cellulophaga uliginosa comb. nov.  (+info)