A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. (33/547)

This study describes a practical system that allows high-throughput genotyping of single nucleotide polymorphisms (SNPs) and detection of mutations by allele-specific extension on primer arrays. The method relies on the sequence-specific extension of two immobilized allele-specific primers that differ at their 3'-nucleotide defining the alleles, by a reverse transcriptase (RT) enzyme at optimized reaction conditions. We show the potential of this simple one-step procedure performed on spotted primer arrays of low redundancy by generating over 8000 genotypes for 40 mutations or SNPs. The genotypes formed three easily identifiable clusters and all known genotypes were assigned correctly. Higher degrees of multiplexing will be possible with this system as the power of discrimination between genotypes remained unaltered in the presence of over 100 amplicons in a single reaction. The enzyme-assisted reaction provides highly specific allele distinction, evidenced by its ability to detect minority sequence variants present in 5% of a sample at multiple sites. The assay format based on miniaturized reaction chambers at standard 384-well spacing on microscope slides carrying arrays with two primers per SNP for 80 samples results in low consumption of reagents and makes parallel analysis of a large number of samples convenient. In the assay one or two fluorescent nucleotide analogs are used as labels, and thus the genotyping results can be interpreted with presently available array scanners and software. The general accessibility, simple set-up, and the robust procedure of the array-based genotyping system described here will offer an easy way to increase the throughput of SNP typing in any molecular biology laboratory.  (+info)

Binding affinity of T7 RNA polymerase to its promoter in the supercoiled and linearized DNA templates. (34/547)

A promoter competition assay was used to measure the stability of T7 RNA polymerase with its promoter. When T7 RNA polymerase was incubated with GTP for 5 minutes before the elongation of transcription in either the supercoiled or linearized template, the half-lives of T7 RNA polymerase-DNA complexes were reduced. The transcription product increased when T7 RNA polymerase preincubated with GTP in the supercoiled DNA but not in the linearized DNA template. On the other hand, preincubation of ATP with T7 RNA polymerase decreased the stability of T7 RNA polymerase with the supercoiled DNA, but did not affect the stability of T7 RNA polymerase with the linearized DNA. Furthermore, the production of RNA transcript was increased when T7 RNA polymerase was incubated with ATP in either supercoiled or linearized template before transcription elongation. This study is important to understand the relationship between the transcription initiation and the stability of the ternary complex, and to produce large quantities of RNA transcript in vitro.  (+info)

The interactions of peptides with the innate immune system studied with use of T7 phage peptide display. (35/547)

The icosahedral T7 phage (diameter approximately 65 nm) displaying random peptides at the carboxy-terminus of the phage coat proteins was used as a model for drug and gene delivery vehicles containing peptide ligands. We found that displayed peptides were recognized by natural antibodies and induced complement activation. Strikingly, the phage inactivation by complement was peptide-specific that implied the existence of numerous natural antibodies with different peptide specificity. Selection of phage that avoided inactivation by complement allowed the identification of peptides that protected the phage by binding to serum proteins. In rat blood, peptides with carboxy-terminal lysine or arginine residues protected the phage against complement-mediated inactivation by binding C-reactive protein. In human serum, a number of protective peptides with tyrosine residues were selected. The recognition of displayed peptides by natural antibodies appears to represent a universal mechanism for activation of complement at sites that contain identical or homologous proteins with exposed carboxy-termini.  (+info)

Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. (36/547)

Bacteriophage phiYeO3-12 is a lytic phage of Yersinia enterocolitica serotype O:3. The phage receptor is the lipopolysaccharide O chain of this serotype that consists of the rare sugar 6-deoxy-L-altropyranose. A one-step growth curve of phiYeO3-12 revealed eclipse and latent periods of 15 and 25 min, respectively, with a burst size of about 120 PFU per infected cell. In electron microscopy phiYeO3-12 virions showed pentagonal outlines, indicating their icosahedral nature. The phage capsid was shown to be composed of at least 10 structural proteins, of which a protein of 43 kDa was predominant. N-terminal sequences of three structural proteins were determined, two of them showing strong homology to structural proteins of coliphages T3 and T7. The phage genome was found to consist of a double-stranded DNA molecule of 40 kb without cohesive ends. A physical map of the phage DNA was constructed using five restriction enzymes. The phage infection could be effectively neutralized using serum from a rabbit immunized with whole phiYeO3-12 particles. The antiserum also neutralized T3 infection, although not as efficiently as that of phiYeO3-12. phiYeO3-12 was found to share, in addition to the N-terminal sequence homology, several common features with T3, including morphology and nonsubjectibility to F exclusion. The evidence conclusively indicated that phiYeO3-12 is the first close relative of phage T3 to be described.  (+info)

Exploiting polymerase promiscuity: A simple colorimetric RNA polymerase assay. (37/547)

We developed a convenient colorimetric assay for monitoring RNA synthesis from DNA-dependent RNA polymerases (DdRp) and viral RNA-dependent RNA polymerases (RdRp). ATP and GTP with a p-nitrophenyl moiety attached to the gamma-phosphate were synthesized (PNP-NTPs). These PNP-NTPs can be used for RNA synthesis by several RNA polymerases, including the RdRps from brome mosaic virus and bovine viral diarrhea virus and the DdRps from bacteriophage T7 and SP6. When the polymerase reactions were performed in the presence of alkaline phosphatase, which digests the p-nitrophenylpyrophosphate side-product of phosphoryl transfer to the chromogenic p-nitrophenylate, an increase in absorbence at 405 nm was observed. These nucleotide analogues were used in continuous colorimetric monitoring of polymerase activity. Furthermore, the PNP-NTPs were found to be stable and utilized by RNA polymerases in the presence of human plasma. This simple colorimetric polymerase assay can be performed in a standard laboratory spectrophotometer and will be useful in screens for inhibitors of viral RNA synthesis.  (+info)

Inhibition of Trypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters. (38/547)

RNA interference is a powerful method for inhibition of gene expression in Trypanosoma brucei (Ngo, H., Tschudi, C., Gull, K., and Ullu, E. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 14687-14692). Here we describe a vector (pZJM) for in vivo tetracycline-inducible synthesis of double-stranded RNA (dsRNA) in stably transformed cells. The dsRNA is synthesized from opposing T7 promoters. We tested the vector with genes involved in processes such as kinetoplast DNA replication, mitochondrial mRNA synthesis, glycosyl phosphatidylinositol biosynthesis, glycosome biogenesis, and polyamine biosynthesis. In most cases the induction of dsRNA caused specific and dramatic loss of the appropriate mRNA, and in many cases there was growth inhibition or cell death. One striking phenotype was the loss of kinetoplast DNA after interference with expression of a topoisomerase II. The gene being analyzed by this procedure need not even be fully sequenced. In fact, many of the genes we tested were derived from partial sequences in the T. brucei genome data base that were identified by homology with known proteins. It takes as little as 3 weeks from identification of a gene sequence in the data base to the appearance of a phenotype.  (+info)

A unique loop in the DNA-binding crevice of bacteriophage T7 DNA polymerase influences primer utilization. (39/547)

The three-dimensional structure of bacteriophage T7 DNA polymerase reveals the presence of a loop of 4 aa (residues 401-404) within the DNA-binding groove; this loop is not present in other members of the DNA polymerase I family. A genetically altered T7 DNA polymerase, T7 polDelta401-404, lacking these residues, has been characterized biochemically. The polymerase activity of T7 polDelta401-404 on primed M13 single-stranded DNA template is one-third of the wild-type enzyme and has a 3'-to-5' exonuclease activity indistinguishable from that of wild-type T7 DNA polymerase. T7 polDelta401-404 polymerizes nucleotides processively on a primed M13 single-stranded DNA template. T7 DNA polymerase cannot initiate de novo DNA synthesis; it requires tetraribonucleotides synthesized by the primase activity of the T7 gene 4 protein to serve as primers. T7 primase-dependent DNA synthesis on single-stranded DNA is 3- to 6-fold less with T7 polDelta401-404 compared with the wild-type enzyme. Furthermore, the altered polymerase is defective (10-fold) in its ability to use preformed tetraribonucleotides to initiate DNA synthesis in the presence of gene 4 protein. The location of the loop places it in precisely the position to interact with the tetraribonucleotide primer and, presumably, with the T7 gene 4 primase. Gene 4 protein also provides helicase activity for the replication of duplex DNA. T7 polDelta401-404 and T7 gene 4 protein catalyze strand-displacement DNA synthesis at nearly the same rate as does wild-type polymerase and T7 gene 4 protein, suggesting that the coupling of helicase and polymerase activities is unaffected.  (+info)

Utilizing fowlpox virus recombinants to generate defective RNAs of the coronavirus infectious bronchitis virus. (40/547)

Coronavirus defective RNAs (D-RNAs) have been used as RNA vectors for the expression of heterologous genes and as vehicles for reverse genetics by modifying coronavirus genomes by targetted recombination. D-RNAs based on the avian coronavirus infectious bronchitis virus (IBV) D-RNA CD-61 have been rescued (replicated and packaged into virions) in a helper virus-dependent manner following electroporation of in vitro-generated T7 transcripts into IBV-infected cells. In order to increase the efficiency of rescue of IBV D-RNAs, cDNAs based on CD-61, under the control of a T7 promoter, were integrated into the fowlpox virus (FPV) genome. The 3'-UTR of the D-RNAs was flanked by a hepatitis delta antigenomic ribozyme and T7 terminator sequence to generate suitable 3' ends for rescue by helper IBV. Cells were co-infected simultaneously with IBV, the recombinant FPV (rFPV) containing the D-RNA sequence and a second rFPV expressing T7 RNA polymerase for the initial expression of the D-RNA transcript, subsequently rescued by helper IBV. Rescue of rFPV-derived CD-61 occurred earlier and with higher efficiency than demonstrated previously for electroporation of in vitro T7-generated RNA transcripts in avian cells. Rescue of CD-61 was also demonstrated for the first time in mammalian cells. The rescue of rFPV-derived CD-61 by M41 helper IBV resulted in leader switching, in which the Beaudette-type leader sequence on CD-61 was replaced with the M41 leader sequence, confirming that helper IBV virus replicated the rFPV-derived D-RNA. An rFPV-derived D-RNA containing the luciferase gene under the control of an IBV transcription-associated sequence was also rescued and expressed luciferase on serial passage.  (+info)