Two new early bacteriophage T4 genes, repEA and repEB, that are important for DNA replication initiated from origin E. (33/780)

Two new, small, early bacteriophage T4 genes, repEA and repEB, located within the origin E (oriE) region of T4 DNA replication, affect functioning of this origin. An important and unusual property of the oriE region is that it is transcribed at early and late periods after infection, but in opposite directions (from complementary DNA strands). The early transcripts are mRNAs for RepEA and RepEB proteins, and they can serve as primers for leading-strand DNA synthesis. The late transcripts, which are genuine antisense RNAs for the early transcripts, direct synthesis of virion components. Because the T4 genome contains several origins, and because recombination can bypass a primase requirement for retrograde synthesis, neither defects in a single origin nor primase deficiencies are lethal in T4 (Mosig et al., FEMS Microbiol. Rev. 17:83-98, 1995). Therefore, repEA and repEB were expected and found to be important for T4 DNA replication only when activities of other origins were reduced. To investigate the in vivo roles of the two repE genes, we constructed nonsense mutations in each of them and combined them with the motA mutation sip1 that greatly reduces initiation from other origins. As expected, T4 DNA synthesis and progeny production were severely reduced in the double mutants as compared with the single motA mutant, but early transcription of oriE was reduced neither in the motA nor in the repE mutants. Moreover, residual DNA replication and growth of the double mutants were different at different temperatures, suggesting different functions for repEA and repEB. We surmise that the different structures and protein requirements for functioning of the different origins enhance the flexibility of T4 to adapt to varied growth conditions, and we expect that different origins in other organisms with multiorigin chromosomes might differ in structure and function for similar reasons.  (+info)

Role of exonucleolytic degradation in group I intron homing in phage T4. (34/780)

Homing of the phage T4 td intron is initiated by the intron-encoded endonuclease I-TevI, which cleaves the intronless allele 23 and 25 nucleotides upstream of the intron insertion site (IS). The distance between the I-TevI cleavage site (CS) and IS implicates endo- and/or exonuclease activities to resect the DNA segment between the IS and CS. Furthermore, 3' tails must presumably be generated for strand invasion by 5'-3' exonuclease activity. Three experimental approaches were used to probe for phage nucleases involved in homing: a comparative analysis of in vivo homing levels of nuclease-deficient phage, an in vitro assay of nuclease activity and specificity, and a coconversion analysis of flanking exon markers. It was thereby demonstrated that T4 RNase H, a 5'-3' exonuclease, T4 DNA exonuclease A (DexA) and the exonuclease activity of T4 DNA polymerase (43Exo), 3'-5' exonucleases, play a role in intron homing. The absence of these functions impacts not only homing efficiency but also the extent of degradation and flanking marker coconversion. These results underscore the critical importance of the 3' tail in intron homing, and they provide the first direct evidence of a role for 3' single-stranded DNA ends as intermediates in T4 recombination. Also, the involvement of RNase H, DexA, and 43Exo in homing provides a clear example of the harnessing of functions variously involved in phage nucleic acid metabolism for intron propagation.  (+info)

Intron homing with limited exon homology. Illegitimate double-strand-break repair in intron acquisition by phage t4. (35/780)

The td intron of bacteriophage T4 encodes a DNA endonuclease that initiates intron homing to cognate intronless alleles by a double-strand-break (DSB) repair process. A genetic assay was developed to analyze the relationship between exon homology and homing efficiency. Because models predict exonucleolytic processing of the cleaved recipient leading to homologous strand invasion of the donor allele, the assay was performed in wild-type and exonuclease-deficient (rnh or dexA) phage. Efficient homing was supported by exon lengths of 50 bp or greater, whereas more limited exon lengths led to a precipitous decline in homing levels. However, extensive homology in one exon still supported elevated homing levels when the other exon was completely absent. Analysis of these "one-sided" events revealed recombination junctions at ectopic sites of microhomology and implicated nucleolytic degradation in illegitimate DSB repair in T4. Interestingly, homing efficiency with extremely limiting exon homology was greatly elevated in phage deficient in the 3'-5' exonuclease, DexA, suggesting that the length of 3' tails is a major determinant of the efficiency of DSB repair. Together, these results suggest that illegitimate DSB repair may provide a means by which introns can invade ectopic sites.  (+info)

In vitro reconstitution of the bacteriophage T4 clamp loader complex (gp44/62). (36/780)

The clamp loader complex (CLC) of bacteriophage T4 is essential for viability and has analogs in both prokaryotes and eukaryotes. The gp44 and gp62 subunits of the T4 CLC, in a 4:1 ratio, tightly associate such that the two proteins co-purify. Using transformed Escherichia coli, we were able to demonstrate for the first time purification of the unique protein gp62 in the absence of gp44. We experimentally determined the isoelectric point for the individual subunits. An in vitro physical interaction could be observed between the native subunits, which resulted in a reconstituted CLC that displayed the signature pattern of the ATPase functions of native CLC. Thus we demonstrate that the CLC forms via a self-assembly pathway rather than through a translational capture mechanism.  (+info)

An antitumor drug-induced topoisomerase cleavage complex blocks a bacteriophage T4 replication fork in vivo. (37/780)

Many antitumor and antibacterial drugs inhibit DNA topoisomerases by trapping covalent enzyme-DNA cleavage complexes. Formation of cleavage complexes is important for cytotoxicity, but evidence suggests that cleavage complexes themselves are not sufficient to cause cell death. Rather, active cellular processes such as transcription and/or replication are probably necessary to transform cleavage complexes into cytotoxic lesions. Using defined plasmid substrates and two-dimensional agarose gel analysis, we examined the collision of an active replication fork with an antitumor drug-trapped cleavage complex. Discrete DNA molecules accumulated on the simple Y arc, with branch points very close to the topoisomerase cleavage site. Accumulation of the Y-form DNA required the presence of a topoisomerase cleavage site, the antitumor drug, the type II topoisomerase, and a T4 replication origin on the plasmid. Furthermore, all three arms of the Y-form DNA were replicated, arguing strongly that these are trapped replication intermediates. The Y-form DNA appeared even in the absence of two important phage recombination proteins, implying that Y-form DNA is the result of replication rather than recombination. This is the first direct evidence that a drug-induced topoisomerase cleavage complex blocks the replication fork in vivo. Surprisingly, these blocked replication forks do not contain DNA breaks at the topoisomerase cleavage site, implying that the replication complex was inactivated (at least temporarily) and that topoisomerase resealed the drug-induced DNA breaks. The replication fork may behave similarly at other types of DNA lesions, and thus cleavage complexes could represent a useful (site-specific) model for chemical- and radiation-induced DNA damage.  (+info)

Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. (38/780)

Recent advances in single molecule manipulation methods offer a novel approach to investigating the protein folding problem. These studies usually are done on molecules that are naturally organized as linear arrays of globular domains. To extend these techniques to study proteins that normally exist as monomers, we have developed a method of synthesizing polymers of protein molecules in the solid state. By introducing cysteines at locations where bacteriophage T4 lysozyme molecules contact each other in a crystal and taking advantage of the alignment provided by the lattice, we have obtained polymers of defined polarity up to 25 molecules long that retain enzymatic activity. These polymers then were manipulated mechanically by using a modified scanning force microscope to characterize the force-induced reversible unfolding of the individual lysozyme molecules. This approach should be general and adaptable to many other proteins with known crystal structures. For T4 lysozyme, the force required to unfold the monomers was 64 +/- 16 pN at the pulling speed used. Refolding occurred within 1 sec of relaxation with an efficiency close to 100%. Analysis of the force versus extension curves suggests that the mechanical unfolding transition follows a two-state model. The unfolding forces determined in 1 M guanidine hydrochloride indicate that in these conditions the activation barrier for unfolding is reduced by 2 kcal/mol.  (+info)

Bacteriophage T4 self-assembly: in vitro reconstitution of recombinant gp2 into infectious phage. (39/780)

T4 gene 2 mutants have a pleiotropic phenotype: degradation of injected phage DNA by exonuclease V (ExoV) in the recBCD(+) host cell cytoplasm and a low burst size due, at least in part, to a decreased ability for head-to-tail (H-T) joining. The more N terminal the mutation, the more pronounced is the H-T joining defect. We have overexpressed and purified the recombinant gene 2 product (rgp2) to homogeneity in order to test its role in H-T joining, during in vitro reconstitution. When we mix extracts of heads from a gp2(+) phage infection (H(+)) with tails from a gp2(+) or gp2(-) phage infection (T(+) or T(-)), the H-T joining is fast and all of the reconstituted phage grow equally well on cells with or without ExoV activity. When heads from gene 2 amber mutants (H(-)) are used, addition of rgp2 is required for H-T joining. In this case, H-T joining is slow and only about 10% of the reconstituted phage can form plaques on ExoV(+) cells. When extracts of heads with different gene 2 amber mutations are mixed with extracts of tails (with a gene 2 amber mutation) in the presence of rgp2, we find that the size of the gp2 amber peptide of the head extract is inversely related to the fraction of reconstituted phage with a 2(+) phenotype. We conclude that free rgp2 is biologically active and has a direct role in H-T joining but that the process is different from H-T joining promoted by natural gp2 that is incorporated into the head in vivo. Furthermore, it seems that gp2 has a domain which binds it to the head. Thus, the presence of the longer gp2am mutants (with this domain) inhibits their replacement by full-length rgp2.  (+info)

Bacteriophage T4 self-assembly: localization of gp3 and its role in determining tail length. (40/780)

Gene 3 of bacteriophage T4 participates at a late stage in the T4 tail assembly pathway, but the hypothetical protein product, gp3, has never been identified in extracts of infected cells or in any tail assembly intermediate. In order to overcome this difficulty, we expressed gp3 in a high-efficiency plasmid expression vector and subsequently purified it for further analysis. The N-terminal sequence of the purified protein showed that the initial methionine had been removed. Variant C-terminal amino acid sequences were resolved by determining the cysteine content of the protein. The molecular mass of 20.6 kDa for the pure protein was confirmed by Western blotting, using a specific anti-gp3 serum for which the purified protein was the immunogen. We also demonstrated, for the first time, the physical presence of gp3 in the mature T4 phage particle and localized it to the tail tube. By finding a nonleaky, nonpermissive host for a gene 3 mutant, we could clearly demonstrate a new phenotype: the slow, aberrant elongation of the tail tube in the absence of gp3.  (+info)