Variable pleiotropic effects from mutations at the same locus hamper prediction of fitness from a fitness component. (73/413)

The relationship of genotype, fitness components, and fitness can be complicated by genetic effects such as pleiotropy and epistasis and by heterogeneous environments. However, because it is often difficult to measure genotype and fitness directly, fitness components are commonly used to estimate fitness without regard to genetic architecture. The small bacteriophage X174 enables direct evaluation of genetic and environmental effects on fitness components and fitness. We used 15 mutants to study mutation effects on attachment rate and fitness in six hosts. The mutants differed from our lab strain of X174 by only one or two amino acids in the major capsid protein (gpF, sites 101 and 102). The sites are variable in natural and experimentally evolved X174 populations and affect phage attachment rate. Within the limits of detection of our assays, all mutations were neutral or deleterious relative to the wild type; 11 mutants had decreased host range. While fitness was predictable from attachment rate in most cases, 3 mutants had rapid attachment but low fitness on most hosts. Thus, some mutations had a pleiotropic effect on a fitness component other than attachment rate. In addition, on one host most mutants had high attachment rate but decreased fitness, suggesting that pleiotropic effects also depended on host. The data highlight that even in this simple, well-characterized system, prediction of fitness from a fitness component depends on genetic architecture and environment.  (+info)

Analysis of the ATPase subassembly which initiates processive DNA synthesis by DNA polymerase III holoenzyme. (74/413)

The gamma complex (gamma delta delta' chi psi) subassembly of DNA polymerase III holoenzyme transfers the beta subunit onto primed DNA in a reaction which requires ATP hydrolysis. Once on DNA, beta is a "sliding clamp" which tethers the polymerase to DNA for highly processive synthesis. We have examined beta and the gamma complex to identify which subunit(s) hydrolyzes ATP. We find the gamma complex is a DNA dependent ATPase. The beta subunit, which lacks ATPase activity, enhances the gamma complex ATPase when primed DNA is used as an effector. Hence, the gamma complex recognizes DNA and couples ATP hydrolysis to clamp beta onto primed DNA. Study of gamma complex subunits showed no single subunit contained significant ATPase activity. However, the heterodimers, gamma delta and gamma delta', were both DNA-dependent ATPases. Only the gamma delta ATPase was stimulated by beta and was functional in transferring the beta from solution to primed DNA. Similarity in ATPase activity of DNA polymerase III holoenzyme accessory proteins to accessory proteins of phage T4 DNA polymerase and mammalian DNA polymerase delta suggests the basic strategy of chromosome duplication has been conserved throughout evolution.  (+info)

Influence of poly(ADP-ribose) polymerase on the enzymatic synthesis of SV40 DNA. (75/413)

The influence of poly(ADP-ribose) polymerase (PARP) on the replication of DNA containing the SV40 origin of replication has been examined. Extensive replication of SV40 DNA can be carried out in the presence of T antigen, topoisomerase I, the multimeric human single strand DNA-binding protein (HSSB), and DNA polymerase alpha-DNA primase (pol alpha-primase) complex (the monopolymerase system). In the monopolymerase system, both small products (Okazaki fragments), arising from lagging strand synthesis, and long products, arising from leading strand synthesis, are formed. The synthesis of long products requires the presence of relatively high levels of pol alpha-primase complex. In the presence of PARP, the synthesis of long products was blocked and only small Okazaki fragments accumulated, arising from the replication of the lagging strand template. The inhibition of leading strand synthesis by PARP can be effectively reversed by supplementing the monopolymerase system with the multimeric activator 1 protein (A1), the proliferating cell nuclear antigen (PCNA) and PCNA-dependent DNA polymerase delta (the dipolymerase system). The inhibition of leading strand synthesis in the monopolymerase system was caused by the binding of PARP to the ends of DNA chains, which blocked their further extension by pol alpha. The selective accumulation of Okazaki fragments was shown to be due to the coupled synthesis of primers by DNA primase and their immediate extension by pol alpha complexed to primase. PARP had little effect on this coupled reaction, but did inhibit the subsequent elongation of products, presumably after pol alpha dissociated from the 3'-end of the DNA fragments. PARP inhibited several other enzymatic reactions which required free ends of DNA chains. PARP inhibited exonuclease III, DNA ligase, the 5' to 3' exonuclease, and the elongation of primed DNA templates by pol alpha. In contrast, PARP only partly competed with the elongation of primed DNA templates by the pol delta elongation system which required SSB, A1, and PCNA. These results suggest that the binding of PARP at the ends of nascent DNA chains can be displaced by the binding of A1 and PCNA to primer ends. HSSB can be poly(ADP-ribosylated) in vivo as well as in vitro. However, the selective effect of PARP in blocking leading strand synthesis in the monopolymerase system was shown to depend primarily on its DNA binding property rather than on its ability to synthesize poly(ADP-ribose).  (+info)

Biochemical analysis of the substrate specificity and sequence preference of endonuclease IV from bacteriophage T4, a dC-specific endonuclease implicated in restriction of dC-substituted T4 DNA synthesis. (76/413)

Endonuclease IV encoded by denB of bacteriophage T4 is implicated in restriction of deoxycytidine (dC)-containing DNA in the host Escherichia coli. The enzyme was synthesized with the use of a wheat germ cell-free protein synthesis system, given a lethal effect of its expression in E.coli cells, and was purified to homogeneity. The purified enzyme showed high activity with single-stranded (ss) DNA and denatured dC-substituted T4 genomic double-stranded (ds) DNA but exhibited no activity with dsDNA, ssRNA or denatured T4 genomic dsDNA containing glucosylated deoxyhydroxymethylcytidine. Characterization of Endo IV activity revealed that the enzyme catalyzed specific endonucleolytic cleavage of the 5' phosphodiester bond of dC in ssDNA with an efficiency markedly dependent on the surrounding nucleotide sequence. The enzyme preferentially targeted 5'-dTdCdA-3' but tolerated various combinations of individual nucleotides flanking this trinucleotide sequence. These results suggest that Endo IV preferentially recognizes short nucleotide sequences containing 5'-dTdCdA-3', which likely accounts for the limited digestion of ssDNA by the enzyme and may be responsible in part for the indispensability of a deficiency in denB for stable synthesis of dC-substituted T4 genomic DNA.  (+info)

Quantifying organismal complexity using a population genetic approach. (77/413)

BACKGROUND: Various definitions of biological complexity have been proposed: the number of genes, cell types, or metabolic processes within an organism. As knowledge of biological systems has increased, it has become apparent that these metrics are often incongruent. METHODOLOGY: Here we propose an alternative complexity metric based on the number of genetically uncorrelated phenotypic traits contributing to an organism's fitness. This metric, phenotypic complexity, is more objective than previous suggestions, as complexity is measured from a fundamental biological perspective, that of natural selection. We utilize a model linking the equilibrium fitness (drift load) of a population to phenotypic complexity. We then use results from viral evolution experiments to compare the phenotypic complexities of two viruses, the bacteriophage X174 and vesicular stomatitis virus, and to illustrate the consistency of our approach and its applicability. CONCLUSIONS/SIGNIFICANCE: Because Darwinian evolution through natural selection is the fundamental element unifying all biological organisms, we propose that our metric of complexity is potentially a more relevant metric than others, based on the count of artificially defined set of objects.  (+info)

Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. (78/413)

The most consistent result in more than two decades of experimental evolution is that the fitness of populations adapting to a constant environment does not increase indefinitely, but reaches a plateau. Using experimental evolution with bacteriophage, we show here that the converse is also true. In populations small enough such that drift overwhelms selection and causes fitness to decrease, fitness declines down to a plateau. We demonstrate theoretically that both of these phenomena must be due either to changes in the ratio of beneficial to deleterious mutations, the size of mutational effects, or both. We use mutation accumulation experiments and molecular data from experimental evolution to show that the most significant change in mutational effects is a drastic increase in the rate of beneficial mutation as fitness decreases. In contrast, the size of mutational effects changes little even as organismal fitness changes over several orders of magnitude. These findings have significant implications for the dynamics of adaptation.  (+info)

Dissociation of DNA from histone by reaction of anti-cancer drug cis-diamminedichloroplatinum(II) with DNA-histone complexes used as cellular model. (79/413)

Although both cis-diamminedichloroplatinum(II) (cisplatin or cis-DDP) and trans-diamminedichloroplatinum(II) bind to DNA, only cis-DDP is widely used as a chemotherapeutic agent; the stereoisomer trans-DDP is inactive. DNA, generally, is wound around the histone core in the nucleus of living cells and forms the nucleosome structure. To understand the essentially different anticancer activities of cis-DDP and trans-DDP, it is necessary to investigate the interaction of cis-DDP (or trans-DDP) with DNA around the histone in the nucleosome. Here, we used psiX174DNA-histone(LNCaP) complexes prepared by the reaction of psiX174DNA with histone(LNCaP) extracted from LNCaP cells. We first show that the ability of cis-DDP to dissociate the DNA from psiX174DNA-histone(LNCaP), as a nucleosome model, is much stronger than that of trans-DDP. As a result of the action of cis-DDP, the DNA in the nucleosome is rendered naked, and the naked DNA is vulnerable to cis-DDP (or other drugs). This study describes a new model showing that the difference in the activities of cis-DDP and trans-DDP is related to the difference in their abilities to dissociate the DNA from the nucleosome.  (+info)

Topological differences in the interaction of human DNA topoisomerase I with DNA-histone complexes modified by cis- and trans-DDP. (80/413)

We show that the trefoil, figure-eight knot, and mini circular closed DNA are formed by the reaction of cis-DDP-modified psiX174DNA-histone(LNCaP) complexes as a new nucleosome model with human DNA topoisomease I. The yields from cis-DDP-modified complexes were far higher than that of trans-DDP. The topologically-distinct invariant DNA such as the trefoil and figure-eight knot are not produced in the reaction of DNA topo I with psiX174DNA-histone(LNCaP) complexes that are not modified by platinum. Therefore, the anti-cancer activity of cis-DDP may be related to the production of the trefoil, figure-eight knot, and mini circular closed DNA forms in the living cell. We subsequently demonstrate that the yield mechanism and identification of the topologically-distinct invariant DNA can be explained by the topological method using a Jones polynomial and recombination through the topo I path intra-twisted looped DNA model. These results suggest that the distinguishing of anti-neoplastic activity of cis- and trans-DDP can be partially explained by the distinct topologies of DNA, trefoil, figure-eight knot, and mini circular closed DNA that they produce.  (+info)