Evolution of mutational robustness in an RNA virus. (33/87)

Mutational (genetic) robustness is phenotypic constancy in the face of mutational changes to the genome. Robustness is critical to the understanding of evolution because phenotypically expressed genetic variation is the fuel of natural selection. Nonetheless, the evidence for adaptive evolution of mutational robustness in biological populations is controversial. Robustness should be selectively favored when mutation rates are high, a common feature of RNA viruses. However, selection for robustness may be relaxed under virus co-infection because complementation between virus genotypes can buffer mutational effects. We therefore hypothesized that selection for genetic robustness in viruses will be weakened with increasing frequency of co-infection. To test this idea, we used populations of RNA phage phi6 that were experimentally evolved at low and high levels of co-infection and subjected lineages of these viruses to mutation accumulation through population bottlenecking. The data demonstrate that viruses evolved under high co-infection show relatively greater mean magnitude and variance in the fitness changes generated by addition of random mutations, confirming our hypothesis that they experience weakened selection for robustness. Our study further suggests that co-infection of host cells may be advantageous to RNA viruses only in the short term. In addition, we observed higher mutation frequencies in the more robust viruses, indicating that evolution of robustness might foster less-accurate genome replication in RNA viruses.  (+info)

Pleiotropic costs of niche expansion in the RNA bacteriophage phi 6. (34/87)

Natural and experimental systems have failed to universally demonstrate a trade-off between generalism and specialism. When a trade-off does occur it is difficult to attribute its cause to antagonistic pleiotropy without dissecting the genetic basis of adaptation, and few previous experiments provide these genetic data. Here we investigate the evolution of expanded host range (generalism) in the RNA virus phi6, an experimental model system allowing adaptive mutations to be readily identified. We isolated 10 spontaneous host range mutants on each of three novel Pseudomonas hosts and determined whether these mutations imposed fitness costs on the standard laboratory host. Sequencing revealed that each mutant had one of nine nonsynonymous mutations in the phi6 gene P3, important in host attachment. Seven of these nine mutations were costly on the original host, confirming the existence of antagonistic pleiotropy. In addition to this genetically imposed cost, we identified an epigenetic cost of generalism that occurs when phage transition between host types. Our results confirm the existence in phi6 of two costs of generalism, genetic and environmental, but they also indicate that the cost is not always large. The possibility for cost-free niche expansion implies that varied ecological conditions may favor host shifts in RNA viruses.  (+info)

Bacteriophage migration via nematode vectors: host-parasite-consumer interactions in laboratory microcosms. (35/87)

Pathogens vectored by nematodes pose serious agricultural, economic, and health threats; however, little is known of the ecological and evolutionary aspects of pathogen transmission by nematodes. Here we describe a novel model system with two trophic levels, bacteriophages and nematodes, each of which competes for bacteria. We demonstrate for the first time that nematodes are capable of transmitting phages between spatially distinct patches of bacteria. This model system has considerable advantages, including the ease of maintenance and manipulation at the laboratory bench, the ability to observe many generations in short periods, and the capacity to freeze evolved strains for later comparison to their ancestors. More generally, experimental studies of complex multispecies interactions, host-pathogen coevolution, disease dynamics, and the evolution of virulence may benefit from this model system because current models (e.g., chickens, mosquitoes, and malaria parasites) are costly to maintain, are difficult to manipulate, and require considerable space. Our initial explorations centered on independently assessing the impacts of nematode, bacterium, and phage population densities on virus migration between host patches. Our results indicated that virus transmission increases with worm density and host bacterial abundance; however, transmission decreases with initial phage abundance, perhaps because viruses eliminate available hosts before migration can occur. We discuss the microbial growth dynamics that underlie these results, suggest mechanistic explanations for nematode transmission of phages, and propose intriguing possibilities for future research.  (+info)

Structure of the bacteriophage phi6 nucleocapsid suggests a mechanism for sequential RNA packaging. (36/87)

Bacteriophage phi6 is an enveloped dsRNA virus with a segmented genome. Phi6 specifically packages one copy of each of its three genome segments into a preassembled polymerase complex. This leads to expansion of the polymerase complex, minus and plus strand RNA synthesis, and assembly of the nucleocapsid. The phi6 in vitro assembly and packaging system is a valuable model for dsRNA virus replication. The structure of the nucleocapsid at 7.5 A resolution presented here reveals the secondary structure of the two major capsid proteins. Asymmetric P1 dimers organize as an inner T = 1 shell, and P8 trimers organize as an outer T = 13 laevo shell. The organization of the P1 molecules in the unexpanded and expanded polymerase complex suggests that the expansion is accomplished by rigid body movements of the P1 monomers. This leads to exposure of new potential RNA binding surfaces to control the sequential packaging of the genome segments.  (+info)

Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent RNA polymerase. (37/87)

The discovery of RNA interference (RNAi) has revolutionized biological research and has a huge potential for therapy. Since small double-stranded RNAs (dsRNAs) are required for various RNAi applications, there is a need for cost-effective methods for producing large quantities of high-quality dsRNA. We present two novel, flexible virus-based systems for the efficient production of dsRNA: (1) an in vitro system utilizing the combination of T7 RNA polymerase and RNA-dependent RNA polymerase (RdRP) of bacteriophage 6 to generate dsRNA molecules of practically unlimited length, and (2) an in vivo RNA replication system based on carrier state bacterial cells containing the 6 polymerase complex to produce virtually unlimited amounts of dsRNA of up to 4.0 kb. We show that pools of small interfering RNAs (siRNAs) derived from dsRNA produced by these systems significantly decreased the expression of a transgene (eGFP) in HeLa cells and blocked endogenous pro-apoptotic BAX expression and subsequent cell death in cultured sympathetic neurons.  (+info)

Electron cryomicroscopy comparison of the architectures of the enveloped bacteriophages phi6 and phi8. (38/87)

The enveloped dsRNA bacteriophages phi6 and phi8 are the two most distantly related members of the Cystoviridae family. Their structure and function are similar to that of the Reoviridae but their assembly can be conveniently studied in vitro. Electron cryomicroscopy and three-dimensional icosahedral reconstruction were used to determine the structures of the phi6 virion (14 A resolution), phi8 virion (18 A resolution), and phi8 core (8.5 A resolution). Spikes protrude 2 nm from the membrane bilayer in phi6 and 7 nm in phi8. In the phi6 nucleocapsid, 600 copies of P8 and 72 copies of P4 interact with the membrane, whereas in phi8 it is only P4 and 60 copies of a minor protein. The major polymerase complex protein P1 forms a dodecahedral shell from 60 asymmetric dimers in both viruses, but the alpha-helical fold has apparently diverged. These structural differences reflect the different host ranges and entry and assembly mechanisms of the two viruses.  (+info)

High frequency of mutations that expand the host range of an RNA virus. (39/87)

The ability of a virus population to colonize a novel host is predicted to depend on the equilibrium frequency of potential colonists (i.e., genotypes capable of infecting the novel host) in the source population. In this study, we investigated the determinants of the equilibrium frequency of potential colonists in the RNA bacteriophage 6. We isolated 40 spontaneous mutants capable of infecting a novel Pseudomonas syringae host and sequenced their host attachment genes to identify the responsible mutations. We observed 16 different mutations in the host attachment gene and used a new statistical approach to estimate that 39 additional mutations were missed by our screen. Phenotypic and fitness assays confirmed that the proximate mechanism underlying host range expansion was an increase in the ability to attach to the novel host and that acquisition of this ability most often imposed a cost for growth rate on two standard hosts. Considered in a population genetic framework, our data suggest that host range mutations should exist in phage populations at an equilibrium frequency (3 x 10(-4)) that exceeds the phage mutation rate by more than two orders of magnitude. Thus, colonization of novel hosts is unlikely to be limited by an inability to produce appropriate mutations.  (+info)

Initial location of the RNA-dependent RNA polymerase in the bacteriophage Phi6 procapsid determined by cryo-electron microscopy. (40/87)

 (+info)