Cre reporter system to monitor the translocation of type III secreted proteins into host cells. (49/133)

Central to the study of type III secretion systems is the availability of reporter systems to monitor bacterial protein translocation into host cells. We report here the development of a bacteriophage P1 Cre recombinase-based system to monitor the translocation of bacterial proteins into mammalian cells. Bacteriophage P1 Cre recombinase fused to the secretion and translocation signals of Salmonella enterica serovar Typhimurium of the type III secreted protein SopE was secreted in a type III secretion system-dependent fashion. More importantly, the SopE-Cre chimera was translocated into host cells via the type III secretion system and activated the expression of luciferase and green fluorescent protein reporters of Cre recombinase activity.  (+info)

A high-throughput screen identifying sequence and promiscuity characteristics of the loxP spacer region in Cre-mediated recombination. (50/133)

BACKGROUND: Cre-loxP recombination refers to the process of site-specific recombination mediated by two loxP sequences and the Cre recombinase protein. Transgenic experiments exploit integrative recombination, where a donor plasmid carrying a loxP site and DNA of interest integrate into a recipient loxP site in a target genome. Unfortunately, integrative recombination is highly inefficient because the insert is flanked by two loxP sites, which themselves become targets for Cre and lead to subsequent excision of the insert. A small number of mutations have been discovered in parts of the loxP sequence, specifically the spacer and inverted repeat segments, that increase the efficiency of integrative recombination. In this study we introduce a high-throughput in vitro assay to rapidly detect novel loxP spacer mutants and describe the sequence characteristics of successful recombinants. RESULTS: We created synthetic loxP oligonucleotides that contained a combination of inverted repeat mutations (the lox66 and lox71 mutations) and mutant spacer sequences, degenerate at 6 of the 8 positions. After in vitro Cre recombination, 3,124 recombinant clones were identified by sequencing. Included in this set were 31 unique, novel, self-recombining sequences. Using network visualization tools, we recognized 12 spacer sets with restricted promiscuity. We observed that increased guanine content at all spacer positions save for position 8 resulted in increased recombination. Interestingly, recombination between identical spacers was not preferred over non-identical spacers. We also identified a set of 16 pairs of loxP spacers that reacted at least twice with another spacer, but not themselves. Further, neither the wild-type P1 phage loxP sequence nor any of the known loxP spacer mutants appeared to be kinetically favoured by Cre recombinase. CONCLUSION: This study approached loxP spacer mutant screening in an unbiased manner, assuming nothing about candidate loxP sites save for the conserved 4 and 5 spacer positions. Candidate sites were free to recombine with any other sequence in the pool of all possible sites. The subset of loxP sites identified here are candidates for in vivo serial recombination as they have already demonstrated limited promiscuity with other loxP spacer and stability in the presence of Cre.  (+info)

Mutator and antimutator effects of the bacteriophage P1 hot gene product. (51/133)

The Hot (homolog of theta) protein of bacteriophage P1 can substitute for the Escherichia coli DNA polymerase III theta subunit, as evidenced by its stabilizing effect on certain dnaQ mutants that carry an unstable polymerase III epsilon proofreading subunit (antimutator effect). Here, we show that Hot can also cause an increase in the mutability of various E. coli strains (mutator effect). The hot mutator effect differs from the one caused by the lack of theta. Experiments using chimeric theta/Hot proteins containing various domains of Hot and theta along with a series of point mutants show that both N- and C-terminal parts of each protein are important for stabilizing the epsilon subunit. In contrast, the N-terminal part of Hot appears uniquely responsible for its mutator activity.  (+info)

Enterohemorrhagic Escherichia coli O157:H7 gal mutants are sensitive to bacteriophage P1 and defective in intestinal colonization. (52/133)

Enterohemorrhagic Escherichia coli (EHEC), especially E. coli O157:H7, is an emerging cause of food-borne illness. Unfortunately, E. coli O157 cannot be genetically manipulated using the generalized transducing phage P1, presumably because its extensive O antigen obscures the P1 receptor, the lipopolysaccharide (LPS) core subunit. The GalE, GalT, GalK, and GalU proteins are necessary for modifying galactose before it can be assembled into the repeating subunit of the O antigen. Here, we constructed E. coli O157:H7 gal mutants which presumably have little or no O antigen. These strains were able to adsorb P1. P1 lysates grown on the gal mutant strains could be used to move chromosomal markers between EHEC strains, thereby facilitating genetic manipulation of E. coli O157:H7. The gal mutants could easily be reverted to a wild-type Gal(+) strain using P1 transduction. We found that the O157:H7 galETKM::aad-7 deletion strain was 500-fold less able to colonize the infant rabbit intestine than the isogenic Gal(+) parent, although it displayed no growth defect in vitro. Furthermore, in vivo a Gal(+) revertant of this mutant outcompeted the galETKM deletion strain to an extent similar to that of the wild type. This suggests that the O157 O antigen is an important intestinal colonization factor. Compared to the wild type, EHEC gal mutants were 100-fold more sensitive to a peptide derived from bactericidal permeability-increasing protein, a bactericidal protein found on the surface of intestinal epithelial cells. Thus, one way in which the O157 O antigen may contribute to EHEC intestinal colonization is to promote resistance to host-derived antimicrobial polypeptides.  (+info)

Inorganic polyphosphate essential for lytic growth of phages P1 and fd. (53/133)

Transduction frequency with phage P1 had been observed to be very low in Escherichia coli K-12 mutants lacking the operon (ppk1-ppx) responsible for the synthesis of inorganic polyphosphate (poly P). We now find that these mutants, for lack of poly P, are lysogenic for P1 and when infected with phage P1 produce only approximately 1% the number of infective centers compared with the WT host. Both phage adsorption and release were unaffected. The host-encoded P1 late-gene transcriptional activator, SspA, failed to show the transcriptional increase in the mutant, observed in the WT. UV induction of a P1-infected mutant resulted in a 200-fold increase in the production of infectious phage particles. The lysogenized P1 (P1mut) and P1 progeny from the mutant host (Deltappk1-ppx) produced plaques of differing morphologies, whereas P1 progeny from the WT yielded only small, clear plaques. Two discernable variants, one producing small and clear plaques (P1small) and the other large plaques with turbid rims (P1large), had broader host range and produced larger burst sizes in WT compared with P1. Transmission electron microscopy showed P1mut had contractile sheath defects. Thus, the lack of poly P/PPK1 in the mutant host resulted in the formation of defective P1 particles during intracellular growth. A filamentous phage, fd, also failed to produce plaques on a mutant lawn. Although fd adsorbed to the F-pilus, its DNA failed to enter the mutant host.  (+info)

High-frequency phage-mediated gene transfer among Escherichia coli cells, determined at the single-cell level. (54/133)

Recent whole-genome analysis suggests that lateral gene transfer by bacteriophages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency of phage-mediated gene transfer, we employed cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) and investigated the movement of the ampicillin resistance gene among Escherichia coli cells mediated by phage at the single-cell level. Phages P1 and T4 and the newly isolated E. coli phage EC10 were used as vectors. The transduction frequencies determined by conventional plating were 3x10(-8) to 2x10(-6), 1x10(-8) to 4x10(-8), and <4x10(-9) to 4x10(-8) per PFU for phages P1, T4, and EC10, respectively. The frequencies of DNA transfer determined by CPRINS-FISH were 7x10(-4) to 1x10(-3), 9x10(-4) to 3x10(-3), and 5x10(-4) to 4x10(-3) for phages P1, T4, and EC10, respectively. Direct viable counting combined with CPRINS-FISH revealed that more than 20% of the cells carrying the transferred gene retained their viabilities. These results revealed that the difference in the number of viable cells carrying the transferred gene and the number of cells capable of growth on the selective medium was 3 to 4 orders of magnitude, indicating that phage-mediated exchange of DNA sequences among bacteria occurs with unexpectedly high frequency.  (+info)

The bacteriophage P1 hot gene, encoding a homolog of the E. coli DNA polymerase III theta subunit, is expressed during both lysogenic and lytic growth stages. (55/133)

The bacteriophage P1 hot gene product is a homolog of the theta subunit of E. coli DNA polymerase III. Previous studies with hot cloned on a plasmid have shown that Hot protein can substitute for theta, as evidenced by its stabilizing effect on certain dnaQ mutator mutants carrying an unstable pol III proofreading subunit (epsilon subunit). These results are consistent with Hot, like theta, being a replication protein involved in stabilizing the intrinsically unstable epsilon proofreading function. However, the function of hot for the viral life cycle is less clear. In the present study, we show that the hot gene is not essential. Based on its promoter structure, hot has been previously classified as a "late" phage gene, a property that is not easily reconciled with a presumed replication function. Here, we clarify this issue by demonstrating that P1 hot is actively expressed both during the lysogenic state and in the early stages of a lytic induction, in addition to its expression in the late stage of phage development. The results indicate that P1 hot has a complex expression pattern, compatible with a model in which Hot may affect the host replication machinery to benefit overall phage replication.  (+info)

PepA and ArgR do not regulate Cre recombination at the bacteriophage P1 loxP site. (56/133)

 (+info)