The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli. (9/1664)

Microcin J25 (MccJ25) is the single representative of the immunity group J of the microcin group of peptide antibiotics produced by Enterobacteriaceae. It induces bacterial filamentation in susceptible cells in a non-SOS-dependent pathway [R. A. Salomon and R. Farias (1992) J. Bacteriol. 174, 7428-7435]. MccJ25 was purified to homogeneity from the growth medium of a microcin-overproducing Escherichia coli strain by reverse-phase HPLC. Based on amino acid composition and absolute configuration determination, liquid secondary ion and electrospray mass spectrometry, extensive two-dimensional NMR, enzymatic and chemical degradations studies, the structure of MccJ25 was elucidated as a 21-residue peptide, cyclo(-Val1-Gly-Ile-Gly-Thr- Pro-Ile-Ser-Phe-Tyr-Gly-Gly-Gly-Ala-Gly-His-Val-Pro-Glu-Tyr-Phe21- ). Although MccJ25 showed high resistance to most of endoproteases, linearization by thermolysin occurred from cleavage at the Phe21-Val1 bond and led to a single peptide, MccJ25-L. While MccJ25 exhibited remarkable antibiotic activity towards Salmonella newport and several E. coli strains (minimal inhibitory concentrations ranging between 0.01 and 0.2 microgram.mL-1), the thermolysin-linearized microcin showed a dramatic decrease of the activity, indicating that the cyclic structure is essential for the MccJ25 biological properties. As MccJ25 is ribosomally synthesized as a larger peptide precursor endowed with an N-terminal extremity, the present study shows that removal of this extension and head-tail cyclization of the resulting propeptide are the only post-translational modifications involved in the maturation of MccJ25, that appears as the first cyclic microcin.  (+info)

Characterization and heterologous expression of the genes encoding enterocin a production, immunity, and regulation in Enterococcus faecium DPC1146. (10/1664)

Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10, 879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis.  (+info)

Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. (11/1664)

A 4.8-kb plasmid region carrying the four genes mcjABCD necessary for production of and immunity to the cyclic peptide antibiotic microcin J25 (MccJ25) has been sequenced. mcjA encodes the primary structure of MccJ25 as a precursor endowed with an N-terminal extension of 37 amino acids. The products of mcjB and mcjC are thought to be involved in microcin maturation, which implies cleavage of McjA and head-tail linkage of the 21-residue pro-MccJ25. The predicted McjD polypeptide, which is highly similar to several ABC exporters, was found to be required for MccJ25 secretion, thus explaining its ability to confer immunity to MccJ25.  (+info)

Evidence for production of a new lantibiotic (butyrivibriocin OR79A) by the ruminal anaerobe Butyrivibrio fibrisolvens OR79: characterization of the structural gene encoding butyrivibriocin OR79A. (12/1664)

The ruminal anaerobe Butyrivibrio fibrisolvens OR79 produces a bacteriocin-like activity demonstrating a very broad spectrum of activity. An inhibitor was isolated from spent culture fluid by a combination of ammonium sulfate and acidic precipitations, reverse-phase chromatography, and high-resolution gel filtration. N-terminal analysis of the isolated inhibitor yielded a 15-amino-acid sequence (G-N/Q-G/P-V-I-L-X-I-X-H-E-X-S-M-N). Two different amino acid residues were detected in the second and third positions from the N terminus, indicating the presence of two distinct peptides. A gene with significant homology to one combination of the determined N-terminal sequence was cloned, and expression of the gene was confirmed by Northern blotting. The gene (bvi79A) encoded a prepeptide of 47 amino acids and a mature peptide, butyrivibriocin OR79A, of 25 amino acids. Significant sequence homology was found between this peptide and previously reported lantibiotics containing the double-glycine leader peptidase processing site. Immediately downstream of bvi79A was a second, partial open reading frame encoding a peptide with significant homology to proteins which are believed to be involved in the synthesis of lanthionine residues. These findings indicate that the isolated inhibitory peptides represent new lantibiotics. Results from both total and N-terminal amino acid sequencing indicated that the second peptide was identical to butyrivibriocin OR79A except for amino acid substitutions in positions 2 and 3 of the mature lantibiotic. Only a single coding region was detected when restriction enzyme digests of total DNA were probed either with an oligonucleotide based on the 5' region of bvi79A or with degenerate oligonucleotides based on the predicted sequence of the second peptide.  (+info)

Atypical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE 900. (13/1664)

A purified bacteriocin produced by Enterococcus faecium BFE 900 isolated from black olives was shown by Edman degradation and mass spectrometric analyses to be identical to enterocin B produced by E. faecium T136 from meat (P. Casaus, T. Nilsen, L. M. Cintas, I. F. Nes, P. E. Hernandez, and H. Holo, Microbiology 143:2287-2294, 1997). The structural gene was located on a 2.2-kb HindIII fragment and a 12.0-kb EcoRI chromosomal fragment. The genetic characteristics and production of EntB by E. faecium BFE 900 differed from that described so far by the presence of a conserved sequence like a regulatory box upstream of the EntB gene, and its production was constitutive and not regulated. The 2.2-kb chromosomal fragment contained the hitherto undetected immunity gene for EntB in an atypical orientation that is the reverse of that of the structural gene. Typical transport and other genes associated with bacteriocin production were not detected on the 12.0-kb chromosomal fragment containing the EntB structural gene. This makes the EntB genetic system different from most other bacteriocin systems, where transport and possible regulatory genes are clustered. EntB was subcloned and expressed by the dedicated secretion machinery of Carnobacterium piscicola LV17A. The structural gene was amplified by PCR, fused to the divergicin A signal peptide, and expressed by the general secretory pathway in Enterococcus faecalis ATCC 19433.  (+info)

In vivo processing and antibiotic activity of microcin B17 analogs with varying ring content and altered bisheterocyclic sites. (14/1664)

BACKGROUND: The Escherichia coli peptide antibiotic microcin B17 (MccB17) contains four oxazole and four thiazole rings, and inhibits DNA gyrase. The role of individual and tandem pairs of heterocycles in bioactivity has not been determined previously. RESULTS: The two tandem 4,2-bisheterocycles in MccB17 were varied by expression of MccB17 or mutants containing altered sequences at Gly39-Ser40-Cys41 or Gly54-Cys55-Ser56. A mixture of five-nine-ring MccB17 isoforms were separated and quantitated for antibiotic potency. Mutagenesis of the thiazole-oxazole pair significantly affected antibiotic activity compared with the upstream oxazole-thiazole, which might stabilize partially cyclized intermediates against proteolysis. CONCLUSIONS: Enzymatic heterocyclization in native MccB17 occurs distributively. Antibiotic activity correlates with the number of rings and is differentially sensitive to both the location and the identity of the 4,2-tandem heterocycle pairs in MccB17. Such tandem heterocycles might be useful pharmacophores in combinatorial libraries.  (+info)

A detailed view of a ribosomal active site: the structure of the L11-RNA complex. (15/1664)

We report the crystal structure of a 58 nucleotide fragment of 23S ribosomal RNA bound to ribosomal protein L11. This highly conserved ribonucleoprotein domain is the target for the thiostrepton family of antibiotics that disrupt elongation factor function. The highly compact RNA has both familiar and novel structural motifs. While the C-terminal domain of L11 binds RNA tightly, the N-terminal domain makes only limited contacts with RNA and is proposed to function as a switch that reversibly associates with an adjacent region of RNA. The sites of mutations conferring resistance to thiostrepton and micrococcin line a narrow cleft between the RNA and the N-terminal domain. These antibiotics are proposed to bind in this cleft, locking the putative switch and interfering with the function of elongation factors.  (+info)

The pediocin AcH precursor is biologically active. (16/1664)

The properties of the pediocin AcH precursor, prepediocin AcH, have been studied to gain insight into how producer cells may protect themselves from the activity of intracellular prebacteriocins. The native 62-amino-acid precursor and the 44-amino-acid mature species were expressed in Escherichia coli host strains that lack the leader peptide processing enzyme, PapD. Both forms inhibited the growth of the test bacterium Listeria innocua Lin11, indicating that the native precursor is biologically active. The two species also were synthesized in the context of maltose-binding protein chimeric proteins to facilitate the measurement of their relative specific activities. The chimeric form of the precursor was approximately 80% as active as the chimeric mature species. Of relevance to cell protection and pediocin AcH production, it was determined that the precursor is strongly susceptible to inactivation by reducing agents and to degradation by chymotrypsin and endogenous E. coli proteases. Taken together, the results indicate that the activity of prepediocin AcH may have to be controlled prior to secretion to prevent toxicity to the host. Perhaps producer cells avoid membrane damage by maintaining the precursor in a reduced inactive state or by degrading molecules whose secretion is delayed.  (+info)