Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. (33/418)

PURPOSE: A strain of Salmonella typhimurium (VNP20009), attenuated by chromosomal deletion of the purI and msbB genes, was found to target to tumor and inhibit tumor growth in mice. These findings led to the present phase I study of the intravenous infusion of VNP20009 to patients with metastatic cancer. PATIENTS AND METHODS: In cohorts consisting of three to six patients, 24 patients with metastatic melanoma and one patient with metastatic renal cell carcinoma received 30-minute intravenous bolus infusions containing 10(6) to 10(9) cfu/m(2) of VNP20009. Patients were evaluated for dose-related toxicities, selective replication within tumors, and antitumor effects. RESULTS: The maximum-tolerated dose was 3 x 10(8) cfu/m(2). Dose-limiting toxicity was observed in patients receiving 1 x 10(9) cfu/m(2), which included thrombocytopenia, anemia, persistent bacteremia, hyperbilirubinemia, diarrhea, vomiting, nausea, elevated alkaline phosphatase, and hypophosphatemia. VNP20009 induced a dose-related increase in the circulation of proinflammatory cytokines, such as interleukin (IL)-1beta, tumor necrosis factor alpha, IL-6, and IL-12. Focal tumor colonization was observed in two patients receiving 1 x 10(9) cfu/m(2) and in one patient receiving 3 x 10(8) cfu/m(2). None of the patients experienced objective tumor regression, including those patients with colonized tumors. CONCLUSION: The VNP20009 strain of Salmonella typhimurium can be safely administered to patients, and at the highest tolerated dose, some tumor colonization was observed. No antitumor effects were seen, and additional studies are required to reduce dose-related toxicity and improve tumor localization.  (+info)

Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. (34/418)

The oxazolidinones are a novel class of antimicrobial agents that target protein synthesis in a wide spectrum of gram-positive and anaerobic bacteria. The oxazolidinone PNU-100766 (linezolid) inhibits the binding of fMet-tRNA to 70S ribosomes. Mutations to oxazolidinone resistance in Halobacterium halobium, Staphylococcus aureus, and Escherichia coli map at or near domain V of the 23S rRNA, suggesting that the oxazolidinones may target the peptidyl transferase region responsible for binding fMet-tRNA. This study demonstrates that the potency of oxazolidinones corresponds to increased inhibition of fMet-tRNA binding. The inhibition of fMet-tRNA binding is competitive with respect to the fMet-tRNA concentration, suggesting that the P site is affected. The fMet-tRNA reacts with puromycin to form peptide bonds in the presence of elongation factor P (EF-P), which is needed for optimum specificity and efficiency of peptide bond synthesis. Oxazolidinone inhibition of the P site was evaluated by first binding fMet-tRNA to the A site, followed by translocation to the P site with EF-G. All three of the oxazolidinones used in this study inhibited translocation of fMet-tRNA. We propose that the oxazolidinones target the ribosomal P site and pleiotropically affect fMet-tRNA binding, EF-P stimulated synthesis of peptide bonds, and, most markedly, EF-G-mediated translocation of fMet-tRNA into the P site.  (+info)

Host-pathogen interactions: the seduction of molecular cross talk. (35/418)

Bacterial pathogens have evolved two major strategies to colonise the intestinal epithelium. Adherent microorganisms bind to the apical pole of the intestinal epithelium, whereas invasive microorganisms disrupt and invade the epithelium. Recognition of the genetic bases of bacterial pathogenicity and analysis of the molecular cross talks established between pathogens and their mammalian target cells have illuminated this diversity of interactions. We have compared the strategies of enteroinvasive pathogens, with emphasis on bacterial species such as Shigella, Yersinia, and Salmonella, that represent paradigms of interaction. Cross talks leading to alteration of the epithelial cell actin cytoskeleton appear as a recurrent theme during entry and dissemination into epithelial cells. Other cross talks alter the trafficking of cellular vesicles and induce changes in the intracellular compartment in which they reside, thus creating niches favourable to bacterial survival and growth. Finally, a variety of strategies also exist to deal with other components of the epithelial barrier, such as macrophages. Pro-phagocytic, anti-phagocytic, and pro-apoptotic processes appear to be of particular importance.  (+info)

Toxins and the gut: role in human disease. (36/418)

Bacterial enteric infections exact a heavy toll on the human population, particularly among children. Despite the explosion of knowledge on the pathogenesis of enteric diseases experienced during the past decade, the number of diarrhoeal episodes and human deaths reported worldwide remains of apocalyptic dimensions. However, our better understanding of the pathogenic mechanisms involved in the onset of diarrhoea is finally leading to preventive interventions, such as the development of enteric vaccines, that may have a significant impact on the magnitude of this human plague. The application of a multidisciplinary approach to study bacterial pathogenesis, along with the recent sequencing of entire microbial genomes, have made possible discoveries that are changing the way scientists view the bacterium-host interaction. Today, research on the molecular basis of the pathogenesis of infective diarrhoeal diseases of necessity transcends established boundaries between microbiology, cell biology, intestinal pathophysiology, and immunology. This review focuses on the most recent outcomes of this multidisciplinary effort.  (+info)

Experimental models of small intestinal transplantation in rats: orthotopic versus heterotopic model. (37/418)

Two kinds of surgical models of small intestinal transplantation (SITx) in rats, namely heterotopic (HIT) and orthotopic transplantion (OIT), have been reviewed. In OIT, the small intestine of the recipient is removed and the transplanted intestine replaces it in continuity. On the other hand, in the HIT model, the small intestinal grafts are rendered dysfunctional without alimentary tract continuity. Histological evidence showed that acute rejection appeared earlier in HIT as compared to OIT. Hyperplasia and hypertrophy of the muscularis externa produced in the chronic rejection process were more pronounced in HIT allografts. The HIT grafts showed severe mucosal atrophy due to the lack of intraluminal trophic factors, because oral feedings can stimulate tropic hormones for mucosal growth, and provide nutrients for enterocytes. Intestinal permeability was consistently higher after HIT than after OIT. The HIT grafts demonstrated less contractility and less response to chemical stimulation than did OIT grafts. The OIT models are advantageous in studies of intraluminal nutrients, and intestinal secretions in these models might modulate the intestinal immune status and possibly delay rejection. The superior intestinal barrier function and the delayed onset of rejection in OIT rats suggest that nutrients and other factors in the succus entericus are important for the maintenance of intestinal graft function.  (+info)

Gut-associated lymphoid T cell suppression enhances bacterial translocation in alcohol and burn injury. (38/418)

The mechanism of alcohol-mediated increased infection in burn patients remains unknown. With the use of a rat model of acute alcohol and burn injury, the present study ascertained whether acute alcohol exposure before thermal injury enhances gut bacterial translocation. On day 2 postinjury, we found a severalfold increase in gut bacterial translocation in rats receiving both alcohol and burn injury compared with the animals receiving either injury alone. Whereas there were no demonstrable changes in intestinal morphology in any group of animals, a significant increase in intestinal permeability was observed in ethanol- and burn-injured rats compared with the rats receiving either injury alone. We further examined the role of intestinal immune defense by determining the gut-associated lymphoid (Peyer's patches and mesenteric lymph nodes) T cell effector responses 2 days after alcohol and burn injury. Although there was a decrease in the proliferation and interferon-gamma by gut lymphoid T cells after burn injury alone; the suppression was maximum in the group of rats receiving both alcohol and burn injuries. Furthermore, the depletion of CD3(+) cells in healthy rats resulted in bacterial accumulation in mesenteric lymph nodes; such CD3(+) cell depletion in alcohol- and burn-injured rats furthered the spread of bacteria to spleen and circulation. In conclusion, our data suggest that the increased intestinal permeability and a suppression of intestinal immune defense in rats receiving alcohol and burn injury may cause an increase in bacterial translocation and their spread to extraintestinal sites.  (+info)

Dietary calcium phosphate promotes Listeria monocytogenes colonization and translocation in rats fed diets containing corn oil but not milk fat. (39/418)

Most Gram-positive bacteria are susceptible to the bactericidal action of fatty acids and bile acids. Because dietary calcium phosphate (CaP(i)) lowers the intestinal concentration of these antimicrobial agents, high CaP(i) intake may enhance intestinal colonization of Gram-positive pathogens and the subsequent pathogenesis. In this study, we tested this hypothesis in a rat model using Listeria monocytogenes. Rats were fed diets containing low (20 micromol/g diet) or high (160 micromol/g diet) amounts of CaP(i). Dietary fat was provided as corn oil or milk fat. Rats were orally inoculated with L. monocytogenes. When rats consumed diets containing corn oil, high CaP(i) intake indeed stimulated colonization of L. monocytogenes and increased L. monocytogenes translocation and diarrhea. In addition, supplemental CaP(i) enhanced ex vivo growth of L. monocytogenes in fecal extracts of rats fed corn oil diets, suggesting that high CaP(i) intake decreased a luminal inhibitory factor. The concentrations of bile salts and fatty acids, which were highly listericidal in vitro, were indeed considerably decreased in fecal water of rats in the high calcium corn oil group. Surprisingly, dietary CaP(i) did not affect colonization and translocation of L. monocytogenes in rats fed the milk fat diet, nor did CaP(i) enhance ex vivo growth in fecal extracts. This absence of Listeria stimulation was associated with a lack of effect of dietary CaP(i) on fecal soluble fatty acids. In addition, residual soluble bile salts were higher in rats fed the high CaP(i) milk fat diet compared with the high CaP(i) corn oil diet. These results suggest that the stimulating effect of CaP(i) on L. monocytogenes infection depends on the type of dietary fat consumed.  (+info)

Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. (40/418)

Pseudomonas aeruginosa is an important opportunistic human pathogen. Certain strains can transmigrate across epithelial cells, and their invasive phenotype is correlated with capacity to cause invasive human disease and fatal septicemia in mice. Four multidrug efflux systems have been described in P. aeruginosa, however, their contribution to virulence is unclear. To clarify the role of efflux systems in invasiveness, P. aeruginosa PAO1 wild-type (WT) and its efflux mutants were evaluated in a Madin-Darby canine kidney (MDCK) epithelial cell monolayer system and in a murine model of endogenous septicemia. All efflux mutants except a deltamexCD-oprJ deletion demonstrated significantly reduced invasiveness compared with WT. In particular, a deltamexAB-oprM deletion strain was compromised in its capacity to invade or transmigrate across MDCK cells, and could not kill mice, in contrast to WT which was highly invasive (P < 0.0006) and caused fatal infection (P < 0.0001). The other mutants, including deltamexB and deltamexXY mutants, were intermediate between WT and the deltamexAB-oprM mutant in invasiveness and murine virulence. Invasiveness was restored to the deltamexAB-oprM mutant by complementation with mexAB-oprM or by addition of culture supernatant from MDCK cells infected with WT. We conclude that the P. aeruginosa MexAB-OprM efflux system exports virulence determinants that contribute to bacterial virulence.  (+info)