Detection of cytolethal distending toxin activity and cdt genes in Campylobacter spp. isolated from chicken carcasses. (41/8457)

This study was designed to determine whether isolates from chicken carcasses, the primary source of Campylobacter jejuni and Campylobacter coli in human infections, commonly carry the cdt genes and also whether active cytolethal distending toxin (CDT) is produced by these isolates. Campylobacter spp. were isolated from all 91 fresh chicken carcasses purchased from local supermarkets. Campylobacter spp. were identified on the basis of both biochemical and PCR tests. Of the 105 isolates, 70 (67%) were identified as C. jejuni, and 35 (33%) were identified as C. coli. PCR tests amplified portions of the cdt genes from all 105 isolates. Restriction analysis of PCR products indicated that there appeared to be species-specific differences between the C. jejuni and C. coli cdt genes, but that the restriction patterns of the cdt genes within strains of the same species were almost invariant. Quantitation of active CDT levels produced by the isolates indicated that all C. jejuni strains except four (94%) had mean CDT titers greater than 100. Only one C. jejuni strain appeared to produce no active CDT. C. coli isolates produced little or no toxin. These results confirm the high rate of Campylobacter sp. contamination of fresh chicken carcasses and indicate that cdt genes may be universally present in C. jejuni and C. coli isolates from chicken carcasses.  (+info)

Semiautomated metabolic staining assay for Bacillus cereus emetic toxin. (42/8457)

This paper describes a specific, sensitive, semiautomated, and quantitative Hep-2 cell culture-based 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay for Bacillus cereus emetic toxin. Of nine Bacillus, Brevibacillus, and Paenibacillus species assessed for emetic toxin production, only B. cereus was cytotoxic.  (+info)

Production of antibodies to staphylococcal superantigens in atopic dermatitis. (43/8457)

Staphylococcal superantigens (SAG) are implicated in the inflammation of atopic dermatitis. As SAG mediated diseases may be modified by specific antibodies, the antibody response to SAG in atopic dermatitis was investigated. Immunoglobulin (Ig) G to staphylococcal enterotoxin A (SEA), staphylococcal enterotoxin B (SEB), and toxic shock syndrome toxin 1 (TSST-1) were measured by sandwich enzyme linked immunosorbent assay (ELISA) in 74 children with atopic dermatitis and 111 controls. Controls had detectable IgG to SEA, SEB, and TSST-1, which increased with age. Atopic dermatitis subjects had an increased response to SEB at 6 months to 2 years (76% v 42%) and 2 to 7 years (79% v 57%), and equivalent responses to SEA and TSST-1, compared to controls. It is suggested that increased responses to SEB relate to increased colonisation and hence exposure to superantigen producing staphylococcus in atopic dermatitis, and that inflammation of atopic dermatitis is not caused by an inability to make antibody to SAG.  (+info)

Interactions of CcdB with DNA gyrase. Inactivation of Gyra, poisoning of the gyrase-DNA complex, and the antidote action of CcdA. (44/8457)

The F plasmid-carried bacterial toxin, the CcdB protein, is known to act on DNA gyrase in two different ways. CcdB poisons the gyrase-DNA complex, blocking the passage of polymerases and leading to double-strand breakage of the DNA. Alternatively, in cells that overexpress CcdB, the A subunit of DNA gyrase (GyrA) has been found as an inactive complex with CcdB. We have reconstituted the inactive GyrA-CcdB complex by denaturation and renaturation of the purified GyrA dimer in the presence of CcdB. This inactivating interaction involves the N-terminal domain of GyrA, because similar inactive complexes were formed by denaturing and renaturing N-terminal fragments of the GyrA protein in the presence of CcdB. Single amino acid mutations, both in GyrA and in CcdB, that prevent CcdB-induced DNA cleavage also prevent formation of the inactive complexes, indicating that some essential interaction sites of GyrA and of CcdB are common to both the poisoning and the inactivation processes. Whereas the lethal effect of CcdB is most probably due to poisoning of the gyrase-DNA complex, the inactivation pathway may prevent cell death through formation of a toxin-antitoxin-like complex between CcdB and newly translated GyrA subunits. Both poisoning and inactivation can be prevented and reversed in the presence of the F plasmid-encoded antidote, the CcdA protein. The products of treating the inactive GyrA-CcdB complex with CcdA are free GyrA and a CcdB-CcdA complex of approximately 44 kDa, which may correspond to a (CcdB)2(CcdA)2 heterotetramer.  (+info)

A novel cytotoxin from Clostridium difficile serogroup F is a functional hybrid between two other large clostridial cytotoxins. (45/8457)

The large clostridial cytotoxins (LCTs) constitute a group of high molecular weight clostridial cytotoxins that inactivate cellular small GTP-binding proteins. We demonstrate that a novel LCT (TcdB-1470) from Clostridium difficile strain 1470 is a functional hybrid between "reference" TcdB-10463 and Clostridium sordellii TcsL-1522. It bound to the same specific receptor as TcdB-10463 but glucosylated the same GTP-binding proteins as TcsL-1522. All three toxins had equal enzymatic potencies but were equally cytotoxic only when microinjected. When applied extracellularly TcdB-1470 and TcdB-10463 were considerably more potent cytotoxins than TcsL-1522. The small GTP-binding protein R-Ras was identified as a target for TcdB-1470 and also for TcsL-1522 but not for TcdB-10463. R-Ras is known to control integrin-extracellular matrix interactions from inside the cell. Its glucosylation may be a major determinant for the cell rounding and detachment induced by the two R-Ras-attacking toxins. In contrast, fibroblasts treated with TcdB-10463 were arborized and remained attached, with phosphotyrosine containing structures located at the cell-to-cell contacts and beta3-integrin remaining at the tips of cellular protrusions. These components were absent from cells treated with the R-Ras-inactivating toxins. The novel hybrid toxin will broaden the utility of the LCTs for clarifying the functions of several small GTPases, now including also R-Ras.  (+info)

Prevention of graft-versus-host disease (GVHD) by elimination of recipient-reactive donor T cells with recombinant toxins that target the interleukin 2 (IL-2) receptor. (46/8457)

Graft-versus-host disease (GVHD), due to the presence of recipient-reactive T cells, limits the usefulness of bone marrow transplantation (BMT) and is a major contributor to patient mortality. To prevent GVHD, murine and human T cells were activated by antigen or mitogens and treated with a genetically engineered form of Pseudomonas exotoxin A (PE) directed against the IL-2 receptor. Treatment with the chimeric toxin eliminated alloreactive cytotoxic T lymphocytes (CTL) as determined by cytotoxicity and mixed lymphocyte culture assays. Precursor frequencies of alloreactive cytotoxic T cells and proliferative T cells were reduced up to 100-fold as shown by limiting dilution assays. Flow cytometric analyses revealed that treatment with the chimeric toxin completely eliminated CD25+ cells from the cultures. Toxin treatment had no significant effect on hematopoietic stem and progenitor cells as determined in vitro by colony-forming assays and in vivo by long-term hematopoietic recovery after 950 rad irradiation. Toxin treatment decreased GVHD in transplanted mice to less than 10% (as compared to 88% in untreated controls). Thus, it is possible to prevent life-threatening GVHD after BMT by using a CD25 receptor-directed toxin to eliminate host-reactive T cells from bone marrow grafts.  (+info)

Genetic diversity in the protective antigen gene of Bacillus anthracis. (47/8457)

Bacillus anthracis is a gram-positive spore-forming bacterium that causes the disease anthrax. The anthrax toxin contains three components, including the protective antigen (PA), which binds to eucaryotic cell surface receptors and mediates the transport of toxins into the cell. In this study, the entire 2,294-nucleotide protective antigen gene (pag) was sequenced from 26 of the most diverse B. anthracis strains to identify potential variation in the toxin and to further our understanding of B. anthracis evolution. Five point mutations, three synonymous and two missense, were identified. These differences correspond to six different haploid types, which translate into three different amino acid sequences. The two amino acid changes were shown to be located in an area near a highly antigenic region critical to lethal factor binding. Nested primers were used to amplify and sequence this same region of pag from necropsy samples taken from victims of the 1979 Sverdlovsk incident. This investigation uncovered five different alleles among the strains present in the tissues, including two not seen in the 26-sample survey. One of these two alleles included a novel missense mutation, again located just adjacent to the highly antigenic region. Phylogenetic (cladistic) analysis of the pag corresponded with previous strain grouping based on chromosomal variation, suggesting that plasmid evolution in B. anthracis has occurred with little or no horizontal transfer between the different strains.  (+info)

Cloning and characterization of two bistructural S-layer-RTX proteins from Campylobacter rectus. (48/8457)

Campylobacter rectus is an important periodontal pathogen in humans. A surface-layer (S-layer) protein and a cytotoxic activity have been characterized and are thought to be its major virulence factors. The cytotoxic activity was suggested to be due to a pore-forming protein toxin belonging to the RTX (repeats in the structural toxins) family. In the present work, two closely related genes, csxA and csxB (for C. rectus S-layer and RTX protein) were cloned from C. rectus and characterized. The Csx proteins appear to be bifunctional and possess two structurally different domains. The N-terminal part shows similarity with S-layer protein, especially SapA and SapB of C. fetus and Crs of C. rectus. The C-terminal part comprising most of CsxA and CsxB is a domain with 48 and 59 glycine-rich canonical nonapeptide repeats, respectively, arranged in three blocks. Purified recombinant Csx peptides bind Ca2+. These are characteristic traits of RTX toxin proteins. The S-layer and RTX domains of Csx are separated by a proline-rich stretch of 48 amino acids. All C. rectus isolates studied contained copies of either the csxA or csxB gene or both; csx genes were absent from all other Campylobacter and Helicobacter species examined. Serum of a patient with acute gingivitis showed a strong reaction to recombinant Csx protein on immunoblots.  (+info)