Thermostability of Rhodopseudomonas viridis and Rhodospirillum rubrum chromatophores reflecting physiological conditions. (49/166)

 (+info)

Diffusion-potential-induced oxidation and reduction of cytochromes in chromatophores from Rhodopseudomonas sphaeroides. (50/166)

A membrane potential jump was induced by the addition of valinomycin in the presence of a KCl concentration gradient across the membrane of Rhodopseudomonas sphaeroides chromatophores. As well as a carotenoid band shift, which is known to be an indicator of membrane potential, absorbance changes due to the oxidation-reduction reactions of cytochromes accompanied the jump. Under aerobic conditions with no reductant added, a part of cytochrome c2 was reduced by an inside-positive potential jump of about 100 mV in the time range of tens of seconds. This can be explained by the location of the cytochrome on the inner side of the chromatophore membrane and electrophoretic flow of electrons across the membrane. On the other hand, in the presence of 1 mM ascorbate, a similar jump of membrane potential induced a rapid oxidation of cytochrome c2 and a subsequent reduction. A rapid reduction of b-type cytochrome was also observed. Antimycin A inhibited the c2 oxidation, but did not inhibit the b reduction. The oxidation of cytochrome c2 may be explained by a diffusion-potential-induced electron flow to cytochrome b and a simultaneous electron donation by cytochrome b and cytochrome c2 to a common electron acceptor, possibly a quinone.  (+info)

Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum. (51/166)

 (+info)

Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. (52/166)

The phototrophic bacterium Rhodopseudomonas capsulata was found to be capable of growing chemoautotrophically under aerobic conditions in darkness. Growth was strictly dependent on the presence of H2 as the source of energy and reducing power, O2 as the terminal electron acceptor for energy transduction, and CO2 as the sole carbon source; under optimal conditions the generation time was about 6 h. Chemoautotrophically grown cells showed a relatively high content of bacteriochlorophyll a and intracytoplasmic membranes (chromatophores). Experiments with various mutants of R. capsulata, affected in electron transport, indicate that either of the two terminal oxidases of this bacterium can participate in the energy-yielding oxidation of H2. The ability of R. capsulata to multiply in at least five different physiological growth modes suggests that it is one of the most metabolically versatile procaryotes known.  (+info)

Evaluation of the buffer capacity and permeability constant for protons in chromatophores from Rhodobacter capsulatus. (53/166)

1. The kinetics of decay in the dark of the transmembrane pH difference (delta pH) induced by light in nonphosphorylating chromatophores of Rhodobacter capsulatus were studied using the fluorescent probe 9-aminoacridine, in the presence of 50 mM KCl and 2 microM valinomycin. The transient fluorescence changes induced by acid to base transitions of chromatophore suspensions were used as an empirical calibration [Casadio, R. & Melandri, B. A. (1985) Arch. Biophys. Biochem. 238, 219-228]. The kinetic competence of the probe response was tested by accelerating the delta pH decay with the ionophore nigericin. 2. The time course in the dark of the increase in the internal pH in pre-illuminated chromatophores was analyzed on the basis of a model which assumes a certain number of internal buffers in equilibrium with the free protons and a diffusion-controlled H+ efflux [Whitmarsh, J. (1987) Photosynt. Res. 12, 43-62]. This model was extended to include the effects of the transmembrane electric potential difference on the H+ efflux. 3. The diffusion constant for proton efflux was measured at different values of the internal pH by evaluating the frequency of trains of single-turnover flashes capable of maintaining different delta pH in a steady state. The steady-state equation derived from the model does not include any parameter relative to the internal buffers and allows unequivocal determination of the diffusion constant on the basis of the known H+/e- ratio (equal to two) for the active proton translocation by the bacterial photosynthetic chain. A value for the first-order diffusion constant corresponding to a permeability coefficient, PH = 0.2 micron.s-1, was obtained at an external pH of 8.0; this value was constant for an internal pH ranging over 7.0-4.7. 4. Using the value of the diffusion constant determined experimentally, a satisfactory fitting of the kinetics of delta pH decay in the dark could be obtained when the presence of two internal buffers (with pK values of 3.6 and 6.7, respectively) was assumed. For these calculations, the time course of the transmembrane electric potential difference was evaluated from the electrochromic signal of carotenoids, calibrated with K(+)-induced diffusion potentials. The two internal buffers, suitable for modelling the behaviour of the system, were at concentrations of 250 mM (pK = 3.6) and 24 mM (pK = 6.7) respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  (+info)

Light-induced pH changes and changes in absorbance of pH indicators in Rhodospirillum rubrum chromatophores. (54/166)

1. The light-induced pH change of chromatophore suspensions from Rhodospirillum rubrum was stimulated significantly and similarly by KCl, NaCl, LiCl, RbCl, CsCl, MgCl2, MnCl2, and CaCl2. In the dark, the pH of chromatophore suspensions decreased immediately and markedly on adding these salts. 2. The light-induced pH change stimulated by KCl plus valinomycin was inhibited by LiCl and NaCl, but not by RbCl. 3. The optimum pH values for light-induced pH change and photosynthetic ATP formation were around 5 and 8, respectively. The amount of chromatophore-bound ubiquinone-10 reduced in the light was independent of pH from 5 to 9. At pH 8, the number of protons incorporated into chromatophores in the light was one-half of the number of ubiquinone-10 molecules reduced in the light. 4. Among several pH indicators tested, bromothymol blue (BTB) and neutral red (NR) showed absorbance changes on illumination of chromatophores. Although the pH change indicated by the absorbance change was opposite to the light-induced pH change of the medium, the effect of KCl on the absorbance changes of BTB and NR, and the effect of valinomycin on that of NR, but not on that of BTB, were similar to those on the light-induced pH change. 5. The light-induced absorbance change of BTB was significantly inhibited by NR, whereas that of NR was hardly influenced by BTB. 6. Oligomycin stimulated the light-induced absorbance change of BTB under either non-phosphorylating or phosphorylating conditions. On the other hand, that of NR under phosphorylating conditions was 50% of that under non-phosphorylating conditions, and was increased by oligomycin.  (+info)

Comparison of permeant ion uptake and carotenoid band shift as methods for determining the membrane potential in chromatophores from Rhodopseudomonas sphaeroides Ga. (55/166)

1. A comparison was made of two methods for estimating the membrane potential in chromatophores from Rhodopseudomonas sphaeroides Ga. Illuminated chromatophores generated a potential that is apparently much larger when estimated on the basis of the red-band shift of carotenoids rather than from the extent of uptake of the permeant SCN- ion. 2. In contrast, when the chromatophores were oxidizing NADH or succinate the uptake of SCN- indicated a larger membrane potential than was estimated from the carotenoid band shift. 3. The extent of SCN- uptake and the carotenoid-band shift respond differently to changes in the ionic composition of the reaction medium. 4. The effects of antimycin on the carotenoid band shift and SCN- uptake are reported. 5. It is concluded that the carotenoid band shift and the uptake of SCN- are responding to different aspects of the energized state.  (+info)

Electron-paramagnetic-resonance measurements of the electron-transfer components of the reaction centre of Rhodopseudomonas viridis. Oxidation--reduction potentials and interactions of the electron acceptors. (56/166)

Oxidation-reduction potentiometry was carried out on Rhodopseudomonas viridis chromatophores. Measurements of e.p.r. signals of the semiquinone-iron type at g=1.82 have revealed a more complex situation than previously reported. The presence of three different components is indicated. The midpoint potential (E(m)) of the primary acceptor quinone/semiquinone couple was found to be approx. -165mV at pH10, with a pK being reached at around pH7.5. The primary acceptor also accepts a second electron with an E(m) of -525mV, but this redox transition exhibits a hysteresis effect. Interaction effects indicate the presence of another component with E(m) values at pH10 of approx. -165mV (pK reached at around pH7.5) for single reduction and -350mV (pK at pH10 or greater) for double reduction. It is suggested that this component is the secondary acceptor. Another semiquinone-iron-type component which gives a g=1.82 signal is also present. This component is distinguishable from the primary acceptor by its e.p.r. spectrum, which shows a double peak at g=1.82 and a g(x) line at g=1.76. This component has E(m) values at pH10 for single and double reduction of -15mV and approx. -150mV respectively. Both of these E(m) values are pH-dependent. The presence of an interaction between this component and the photoreduced primary acceptor indicates the close proximity of these components. However, the midpoint potential of this component indicates a function as a secondary electron-transport component rather than an electron acceptor in the reaction centre. The dependence of the bacteriopheophytin intermediate (I) doublet e.p.r. signal on the presence of the semiquinone-iron form of the primary acceptor is demonstrated. The midpoint potential of the I/I(-) couple is estimated to be lower than -600mV.  (+info)