Alpha C protein as a carrier for type III capsular polysaccharide and as a protective protein in group B streptococcal vaccines. (17/1416)

The alpha C protein, a protective surface protein of group B streptococci (GBS), is present in most non-type III GBS strains. Conjugate vaccines composed of the alpha C protein and type III capsular polysaccharide (CPS) might be protective against most GBS infections. In this study, the type III CPS was covalently coupled to full-length, nine-repeat alpha C protein (resulting in III-alpha9r conjugate vaccine) or to two-repeat alpha C protein (resulting in III-alpha2r conjugate vaccine) by reductive amination. Initial experiments with the III-alpha9r vaccine showed that it was poorly immunogenic in mice with respect to both vaccine antigens and was suboptimally efficacious in providing protection in mice against challenge with GBS. Therefore, modified vaccination protocols were used with the III-alpha2r vaccine. Female mice were immunized three times with 0.5, 5, or 20 microgram of the III-alpha2r vaccine with an aluminum hydroxide adjuvant and bred. Ninety-five percent of neonatal mice born to dams immunized with the III-alpha2r vaccine survived challenge with GBS expressing type III CPS, and 60% survived challenge with GBS expressing wild-type (nine-repeat) alpha C protein; 18 and 17%, respectively, of mice in the negative control groups survived (P, <0.0001). These protection levels did not differ significantly from those obtained with the type III CPS-tetanus toxoid conjugate vaccine and the unconjugated two-repeat alpha C protein, which protected 98 and 58% of neonates from infection with GBS expressing type III CPS or the alpha C protein, respectively. Thus, the two-repeat alpha C protein in the vaccine was immunogenic and simultaneously enhanced the immunogenicity of type III CPS. III-alpha vaccines may be alternatives to GBS polysaccharide-tetanus toxoid vaccines, eliciting additional antibodies protective against GBS infection.  (+info)

Meningococcal serogroup C conjugate vaccine is immunogenic in infancy and primes for memory. (18/1416)

The safety, immunogenicity, and immunologic priming of 2 dosages (2 microgram or 10 microgram) of a meningococcal C oligosaccharide-CRM197 conjugate vaccine was evaluated in 114 infants vaccinated at ages 2, 3, and 4 months. Antibody persistence and response to boosting with 10 microgram of meningococcal C polysaccharide were assessed. The meningococcal conjugate vaccine produced fewer local reactions than concurrent routine immunizations. Total serogroup C-specific immunoglobulin geometric mean concentration (GMC) increased from 0.3 microgram/mL before vaccination to 13.1 microgram/mL at age 5 months. Serum bactericidal antibody (SBA) geometric mean titers (GMTs) rose from <1:4 to 1:1057 at 5 months and fell by 14 months to 1:19. Following boosting, anti-C-specific immunoglobulin GMC rose to 15.9 microgram/mL and SBA GMT to 1:495. Antibody responses in the 10-microgram dose cohort were significantly higher at 5 months (P<.01) than in the 2-microgram dose cohort but were lower after polysaccharide boosting (P=.02). This meningococcal conjugate vaccine was well tolerated and immunogenic and induced immunologic memory in infants.  (+info)

Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. (19/1416)

Expression of serogroup B meningococcal capsular polysaccharide undergoes frequent phase variation involving reversible frameshift mutations within a homopolymeric repeat in the siaD gene. A high rate of phase variation is the consequence of a biochemical defect in methyl-directed mismatch repair. The mutator phenotype is associated to the absence of DNA adenine methyltransferase (Dam) activity in all pathogenic isolates and in 50% of commensal strains. Analysis of the meningococcal dam gene region revealed that in all Dam- strains a gene encoding a putative restriction endonuclease (drg) that cleaves only the methylated DNA sequence 5'-GmeATC-3' replaced the dam gene. Insertional inactivation of the dam and/or drg genes indicated that high rates of phase variation and hypermutator phenotype are caused by absence of a functional dam gene.  (+info)

Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. (20/1416)

Vaccines based on preferential expression of bacterial antigens during human infection have not been described. Staphylococcus aureus synthesized poly-N-succinyl beta-1-6 glucosamine (PNSG) as a surface polysaccharide during human and animal infection, but few strains expressed PNSG in vitro. All S. aureus strains examined carried genes for PNSG synthesis. Immunization protected mice against kidney infections and death from strains that produced little PNSG in vitro. Nonimmune infected animals made antibody to PNSG, but serial in vitro cultures of kidney isolates yielded mostly cells that did not produce PNSG. PNSG is a candidate for use in a vaccine to protect against S. aureus infection.  (+info)

Analysis of the 5' portion of the type 19A capsule locus identifies two classes of cpsC, cpsD, and cpsE genes in Streptococcus pneumoniae. (21/1416)

Analysis of the sequence data obtained from the 5' portion of the Streptococcus pneumoniae type 19A capsular polysaccharide biosynthesis locus (cps19a) revealed that the first seven genes are homologous to the first seven genes in the type 19F (cps19f) locus. The former genes were designated cps19aA to -G and were 70 to 90% identical to their cps19f counterparts. Southern hybridization analysis of the cps loci from various S. pneumoniae serotypes with probes specific for the cps19aC, cps19aD, and cps19aE genes indicated a hybridization pattern complementary to that previously reported for cps19fC, cps19fD, and cps19fE. That is, all serotypes tested contained high-stringency homologues of either the cps19aC to -E genes or the cps19fC to -E genes, but not both. On this basis S. pneumoniae cps loci can be divided into two distinct classes. Long-range PCR was used to amplify the cps regions between cpsB and aliA from a variety of pneumococcal serotypes. Direct sequencing of the 5' end of these PCR products, and phylogenetic analysis of the sequence data, confirmed the presence of the two distinct classes of cpsC. Whereas members within one class are greater than 95% identical to each other, the DNA sequence identity between the two classes is only approximately 70%.  (+info)

Correlation of opsonophagocytosis and passive protection assays using human anticapsular antibodies in an infant mouse model of bacteremia for Streptococcus pneumoniae. (22/1416)

An infant mouse assay system for assessment of protective concentrations of human serum pneumococcal anticapsular antibodies is described. Passive immunization of anticapsular antibodies was evaluated for protection of infant mice challenged with Streptococcus pneumoniae serotypes 1, 4, 5, 6B, 18C, and 23A, with bacteremia as an end point. Protection was defined as no detectable bacteremia in 70% of mice 48 h after challenge. Type-specific anticapsular concentrations required for protection varied with serotype (0.4 microg/mL). Across serotypes, there was no significant correlation between human IgG concentration in mouse serum and protection from bacteremia or between IgG concentration and opsonophagocytic titer. Significant correlation (r=.84, P<.001) was observed between opsonophagocytic titer of human IgG antibody in mouse sera and protection from bacteremia. Thus, protective concentrations of anticapsular antibodies against bacteremia are serotype dependent. Opsonophagocytosis is a better predictor of in vivo protective capacity of pneumococcal anticapsular antibodies than are ELISA IgG antibody concentrations.  (+info)

Severe apnoeas following immunisation in premature infants. (23/1416)

Four premature infants developed apnoeas severe enough to warrant resuscitation after immunisation with diphtheria, pertussis, and tetanus (DPT), and Haemophilus influenzae B (Hib). One required re-intubation and ventilation. Although apnoeas after immunisation are recognised, they are not well documented. It is time for further research to elucidate the best time to immunise such infants.  (+info)

Analysis of a capsular polysaccharide biosynthesis locus of Bacteroides fragilis. (24/1416)

A major clinical manifestation of infection with Bacteroides fragilis is the formation of intra-abdominal abscesses, which are induced by the capsular polysaccharides of this organism. Transposon mutagenesis was used to locate genes involved in the synthesis of capsular polysaccharides. A 24,454-bp region was sequenced and found to contain a 15,379-bp locus (designated wcf) with 16 open reading frames (ORFs) encoding products similar to those encoded by genes of other bacterial polysaccharide biosynthesis loci. Four genes encode products that are similar to enzymes involved in nucleotide sugar biosynthesis. Seven genes encode products that are similar to sugar transferases. Two gene products are similar to O-acetyltransferases, and two products are probably involved in polysaccharide transport and polymerization. The product of one ORF, WcfH, is similar to a set of deacetylases of the NodB family. Deletion mutants demonstrated that the wcf locus is necessary for the synthesis of polysaccharide B, one of the two capsular polysaccharides of B. fragilis 9343. The virulence of the polysaccharide B-deficient mutant was comparable to that of the wild type in terms of its ability to induce abscesses in a rat model of intra-abdominal infection.  (+info)