Differential effect of hydroxyurea on the replication of plasmid and chromosomal DNA in Bacillus subtilis. (73/8455)

The replication in Bacillus subtilis of the staphylococcal R plasmids pE194, pBD15, pUB110, pSA0501, and pSA2100 has been studied in the presence of hydroxyurea. In all cases, an enrichment for covalently closed circular DNA compared with chromosomal DNA was observed. In this respect, hydroxyurea mimics the effect previously observed with pUB110, using strains carrying the conditional mutation dnaA13. This mutation has been reported to affect ribonucleotide reductase (G. W. Bazill and D. Karamata, Mol. Gen. Genet. 117:19-29, 1972). An explanation for these effects is offered, together with some supporting evidence.  (+info)

Alterations in Bacillus subtilis transforming DNA induced by beta-propiolactone and 1,3-propane sultone, two mutagenic and carcinogenic alkylating agents. (74/8455)

Transforming DNA was exposed to either beta-propiolactone or 1,3-propane sultone and then used for transformation of competent bacteria to nutritional independence from tyrosine and tryptophan (linked markers) and leucine (an unlinked marker). The ability to transform was progressively lost by the DNA during incubation with either of these two chemicals. For all three markers the inactivation curve was biphasic, with a short period of rapid inactivation followed by one characterized by a much slower rate. The overall rate of inactivation was different for all three markers and presumably was related to the size of the marker. The decrease in the transforming activity was in part due to the slower rate of penetration of alkylated DNA through the cellular membrane and its inability to enter the recipient bacteria. This decrease in the rate of cellular uptake, even for DNA eventually destined to enter the cell, began almost immediately after its exposure to the chemical and ended up with an almost complete lack of recognition of the heavily alkylated DNA by the specific surface receptors of competent cells. Such DNA attached to sites on the surface of competent bacteria which were different from receptors specific for the untreated nucleic acid. This attachment was not followed by uptake of the altered DNA. Presence of albumin during the incubation with a carcinogen further increased the degree of inactivation, indicating that the artificial nucleoproteins produced under such conditions were less efficient in the transformation assay than was the naked DNA. Cotransfomration of close markers progressively decreased, beginning immediately after the start of incubation of DNA with the chemicals. Extensively alkylated DNA fractionated by sedimentation through sucrose density gradients showed a peculiar distribution of cotransforming activity for such markers; namely, molecules larger than the bulk of DNA ("megamolecules") showed less ability to transform the second marker than did some of the apparently smaller molecules which sedimented more slowly through the gradient. An increase in cotransformation of distant markers was evident in DNA molecules after a short exposure to an alkylating agent, but cotransformation of such markers was absent in DNA treated for longer periods. The observed changes in the transforming and cotransforming activities of the alkylated DNA can be explained by what is known about the physicochemistry of such DNA and in particular about the propensity of the alkylated and broken molecules to form complexes with themselves and with other macromolecules.  (+info)

Suppression of temperature-sensitive sporulation of a Bacillus subtilis elongation factor G mutant by RNA polymerase mutations. (75/8455)

A class of rifampin-resistant (rfm) mutations of Bacillus subtilis suppresses the temperature-sensitive sporulation of a fusidic acid-resistant mutant. FUS426, which has an altered elongation factor G. The rfm mutation suppressed only the sporulation defect caused by the elongation factor G mutation, but could not suppress other types of induced sporulation defects. Genetic and biochemical analyses showed that the sporulation suppression by the rfm mutation was caused by a single mutation in RNA polymerase. After the early sporulation phase, the apparent rate of RNA synthesis of FUS426, measured by [3H]uracil or [3H]uridine incorporation into RNA, became lower than that of the wild-type strain, and this decrease was reversed by the rfm mutation. However, when the total rate of RNA synthesis of FUS426 was calculated by measuring the specific activity of [3H]UTP and [3H]CTP, it was higher than that of the rfm mutant, RIF122FUS426. The possible mechanism of the functional interaction between elongation factor G and RNA polymerase during sporulation is discussed.  (+info)

Cell wall assembly in Bacillus subtilis: location of wall material incorporated during pulsed release of phosphate limitation, its accessibility to bacteriophages and concanavalin A, and its susceptibility to turnover. (76/8455)

Addition of a pulse of phosphate to a phosphate-limited chemostat culture of Bacillus subtilis W23 led to the synthesis of teichoic acid and the consequent development by the bacteria of the ability to bind phage SP50. In cultures growing at different rates, phage-binding properties became maximal approximately one generation time after addition of the pulse. Removal of the incorporated teichoic acid by turnover also reached its maximum rate after a similar interval. After pulsed release of phosphate limitation in B. subtilis NCTC 3610, the alpha-glucosyl residues of the incorporated teichoic acid, detected by their interaction with concanavalin A, became maximally exposed at the same time that phage binding was maximum. At that time the bacteria bound phage all over the cylindrical part of the surface and at about one-third of the polar caps. That fraction of the receptor material that is exposed soon after its incorporation was distributed along the cylindrical length of most of the bacteria, but few phages bound to the polar caps, except in the case of short bacteria; these bound phages in a markedly asymmetric manner at one pole and along their length. The significance of these results is discussed in relation to the mode of assembly of the cell wall.  (+info)

Kinetic specificities of BPN' and Carlsberg subtilisins. Mapping the aromatic binding site. (77/8455)

The kinetic specificities of BPN' and Carlsberg subtilisins [EC 3.4.21.14] were examined with various nucleus-substituted derivatives of Nalpha-acetylated aromatic amino acid methyl esters for mapping their hydrophobic binding sites in comparison with that of alpha-chymotrypsin. The Carlsberg enzyme was generally much more reactive than the BPN' enzyme due to the larger kcat value. The fact that the two sutilisins hydrolyzed Ac-Tyr(PABz)-OMe, which is a derivative of tyrosine bearing a planar trans-p-phenylazobenzoyl group at the OH-function, with the smallest Km value showed that these enzymes possess a more extended aromatic binding site than has so far been demonstrated. Ac-Phe(4-NO2)-OMe was remarkable in being hydrolyzed with a particularly large kcat value (5,500 +/- 700 s-1 at pH 7.8 for Carlsberg subtilisin). Ac-Phe(4-NO2)-OMe and Ac-Tyr-OMe were distinguished by Carlsberg subtilisin in terms of kcat but not by BPN' subtilisin, suggesting that the specificity site of the former is more sensitive to a small change in size of substituent than that of the latter. Ac-Trp(NCps)-OMe and Ac-Trp(NCps)-OH were bound to the enzyme's active site but in a competitive manner. A difference in the standard free energies of binding between the two enzymes may indicate that the hydrophobic cleft of Carlsberg subtilisin is somewhat deeper and/or narrower than that of BPN' subtilisin.  (+info)

Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. (78/8455)

Peptidoglycan hydrolase, LytF (CwlE), was determined to be identical to YhdD (deduced cell wall binding protein) by zymography after insertional inactivation of the yhdD gene. YhdD exhibits high sequence similarity with CwlF (PapQ, LytE) and p60 of Listeria monocytogenes. The N-terminal region of YhdD has a signal sequence followed by five tandem repeated regions containing polyserine residues. The C-terminal region corresponds to the catalytic domain, because a truncated protein without the N-terminal region retained cell wall hydrolase activity. The histidine-tagged LytF protein produced in Escherichia coli cells hydrolyzed the linkage of D-gamma-glutamyl-meso-diaminopimelic acid in murein peptides, indicating that it is a D,L-endopeptidase. Northern hybridization and primer extension analyses indicated that the lytF gene was transcribed by EsigmaD RNA polymerase. Disruption of lytF led to slightly filamentous cells, and a lytF cwlF double mutant exhibited extraordinary microfiber formation, which is similar to the cell morphology of the cwlF sigD mutant.  (+info)

Septal localization of penicillin-binding protein 1 in Bacillus subtilis. (79/8455)

Previous studies have shown that Bacillus subtilis cells lacking penicillin-binding protein 1 (PBP1), encoded by ponA, have a reduced growth rate in a variety of growth media and are longer, thinner, and more bent than wild-type cells. It was also recently shown that cells lacking PBP1 require increased levels of divalent cations for growth and are either unable to grow or grow as filaments in media low in Mg2+, suggesting a possible involvement of PBP1 in septum formation under these conditions. Using epitope-tagging and immunofluorescence microscopy, we have now shown that PBP1 is localized at division sites in vegetative cells of B. subtilis. In addition, we have used fluorescence and electron microscopy to show that growing ponA mutant cells display a significant septation defect, and finally by immunofluorescence microscopy we have found that while FtsZ localizes normally in most ponA mutant cells, a significant proportion of ponA mutant cells display FtsZ rings with aberrant structure or improper localization, suggesting that lack of PBP1 affects FtsZ ring stability or assembly. These results provide strong evidence that PBP1 is localized to and has an important function in the division septum in B. subtilis. This is the first example of a high-molecular-weight class A PBP that is localized to the bacterial division septum.  (+info)

Purification, kinetic properties, and intracellular concentration of SpoIIE, an integral membrane protein that regulates sporulation in Bacillus subtilis. (80/8455)

SpoIIE is a bifunctional protein which controls sigmaF activation and formation of the asymmetric septum in sporulating Bacillus subtilis. The spoIIE gene of B. subtilis has now been overexpressed in Escherichia coli, and SpoIIE has been purified by anion-exchange chromatography and affinity chromatography. Kinetic studies showed that the rate of dephosphorylation of SpoIIAA-P by purified SpoIIE in vitro was 100 times greater, on a molar basis, than the rate of phosphorylation of SpoIIAA by SpoIIAB. The intracellular concentrations of SpoIIE and SpoIIAB were measured by quantitative immunoblotting between 0 and 4 h after the beginning of sporulation. The facts that these concentrations were very similar at hour 2 and that SpoIIE could be readily detected before asymmetric septation suggest that SpoIIE activity may be strongly regulated.  (+info)