Characterization of mouse and human B7-H3 genes. (1/88)

T cell activation and immune function are regulated by costimulatory molecules of the B7 superfamily. Human B7-H3 is a recent addition to this family and has been shown to mediate T cell proliferation and IFN-gamma production. In this work we describe the identification of the mouse B7-H3 homolog, which is ubiquitously expressed in a variety of tissues. Activated CD4 and CD8 T cells express a putative receptor that can be recognized by soluble mouse B7-H3-Ig molecules. While the mouse B7-H3 gene was found to contain a single copy, we discovered a novel isoform of human B7-H3 (named as B7-H3b hereafter) with four Ig-like domains that results from gene duplication and differential splicing. B7-H3b is the major isoform expressed in several tissues. This structural information suggests a genetic variation of the B7-H3 gene in mammalian species.  (+info)

Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. (2/88)

In an effort to characterize molecules with immunoregulatory potential, we raised mAbs to human dendritic cells. We selected an Ab that recognizes a molecule that is induced on monocytes differentiated in vitro toward dendritic cells. Retroviral expression cloning identified this molecule as B7-H3, a member of the B7 family described recently. In contrast to an earlier report, in which B7-H3 was described as a molecule consisting of two Ig-like domains, our cDNA encoded a type I membrane protein with four Ig-like domains, and the molecule identified by us was therefore named 4Ig-B7-H3. mRNA analysis as well as Western blotting experiments performed by us did not reveal evidence for a small B7-H3. B7-H3 is not expressed on peripheral blood lymphocytes, monocytes, or granulocytes. Upon in vitro stimulation, the expression of B7-H3 is induced on T cells, B cells, and NK cells. A number of different approaches were used to investigate the function of human B7-H3. In contrast to an earlier report, our data do not support a costimulatory role of B7-H3 in anti-CD3-mediated activation of the TCR-complex resulting in T cell proliferation and IFN-gamma production.  (+info)

Murine B7-H3 is a negative regulator of T cells. (3/88)

T cell activation is regulated by the innate immune system through positive and negative costimulatory molecules. B7-H3 is a novel B7-like molecule with a putative receptor on activated T cells. Human B7-H3 was first described as a positive costimulator, most potently inducing IFN-gamma production and cellular immunity. In this study we examined the expression and function of mouse B7-H3. B7-H3 is mostly expressed on professional APCs; its expression on dendritic cells appears to be up-regulated by LPS. In contrast to human B7-H3, we found that mouse B7-H3 protein inhibited T cell activation and effector cytokine production. An antagonistic mAb to B7-H3 enhanced T cell proliferation in vitro and led to exacerbated experimental autoimmune encephalomyelitis in vivo. Therefore, mouse B7-H3 serves as a negative regulator of T cell activation and function.  (+info)

Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis. (4/88)

In this study, in an attempt to identify neuroblastoma-associated surface antigens, we generated mAbs against the ACN neuroblastoma cell line. A mAb was selected (5B14) that reacted with all neuroblastoma cell lines analyzed and allowed detection of tumor cell infiltrates in bone marrow aspirates from neuroblastoma patients. In cytofluorimetric analysis, unlike anti-disialoganglioside mAb, 5B14 mAb did not display reactivity with normal bone marrow hematopoietic cell precursors, thus representing a highly specific marker for identifying neuroblastoma cells. Molecular analysis revealed that the 5B14 mAb-reactive surface glycoprotein corresponded to the recently identified 4Ig-B7-H3 molecule. Remarkably, mAb-mediated masking of the 4Ig-B7-H3 molecule on cell transfectants or on freshly isolated neuroblastoma cells resulted in enhancement of natural killer-mediated lysis of these target cells. These data suggest that 4Ig-B7-H3 molecules expressed at the tumor cell surface can exert a protective role from natural killer-mediated lysis by interacting with a still undefined inhibitory receptor expressed on natural killer cells.  (+info)

The immune regulatory protein B7-H3 promotes osteoblast differentiation and bone mineralization. (5/88)

B7-H3, a member of the B7 family of the Ig superfamily proteins, is expressed on the surface of the antigen-presenting cells and down-regulates T cell functions by engaging an unknown counterreceptor on T cells. Although B7-H3 is ubiquitously expressed, its potential nonimmune functions have not been addressed. We found that B7-H3 is highly expressed in developing bones during embryogenesis and that its expression increases as osteoblast precursor cells differentiate into mature osteoblasts. In vitro bone formation by osteoblastic cells was inhibited when B7-H3 function was interrupted by the soluble recombinant protein B7-H3-Fc. Analysis of calvarial cells derived from neonatal B7-H3 knockout (KO) mice revealed normal numbers of osteoblast precursor cells possessing a normal proliferative capacity. However, the B7-H3-deficient calvarial cells exhibited impaired osteogenic differentiation, resulting in decreased mineralized bone formation in vitro. These results suggest that B7-H3 is required for the later phase of osteoblast differentiation. Although B7-H3 KO mice had no gross skeletal abnormalities, they displayed a lower bone mineral density in cortical (but not trabecular) bones compared with WT controls. Consistent with the reduced bone mineral density, the femurs of B7-H3 KO mice were more susceptible to bone fracture compared with those of WT mice. Taken together, these results indicate that B7-H3 and its unknown counterreceptor play a positive regulatory role in bone formation. In addition, our findings identified B7-H3 as another molecule that has a dual role in the bone-immune interface.  (+info)

B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. (6/88)

B7-H3 is a B7 family molecule with T cell costimulatory function in vitro. The in vivo role of B7-H3 in the stimulation of tumor immunity is unclear. We report here that expression of B7-H3 by transfection of the mouse P815 tumor line enhances its immunogenicity, leading to the regression of tumors and amplification of a tumor-specific CD8+ CTL response in syngeneic mice. Tumor cells engineered to express B7-H3 elicit a rapid clonal expansion of P1A tumor Ag-specific CD8+ CTL in lymphoid organs in vivo and acquire the ability to directly stimulate T cell growth, division, and development of cytolytic activity in vitro. Our results thus establish a role for B7-H3 in the costimulation of T cell immune responses in vivo.  (+info)

Constitutive and inducible expression of b7 family of ligands by human airway epithelial cells. (7/88)

Activated T cells have been implicated in chronic rhinosinusitis (CRS) and asthma and physically interact with epithelial cells in the airways. We now report that human airway epithelial cells display significant constitutive cell-surface expression of costimulatory ligands, B7-H1, B7-H2, B7-H3, and B7-DC. Expression of B7-H1 and B7-DC was selectively induced by stimulation of either BEAS2B or primary nasal epithelial cells (PNEC) with interferon (IFN)-gamma (100 ng/ml). The combination of IFN-gamma and tumor necrosis factor-alpha (100 ng/ml) selectively induced expression better than IFN-gamma alone. Fluticasone treatment (10(-7) M) reduced the baseline expression and inhibited the induction of B7-H1 and B7-DC in BEAS2B cells. In vitro exposure of PNEC to IFN-gamma also resulted in selective induction of B7-H1 and B7-DC. Monoclonal antibody blockade of B7-H1 or B7-DC enhanced IFN-gamma expression by purified T cells in co-culture experiments, suggesting that these two B7 homologs inhibit T cell responses at the mucosal surface. Immunohistochemical staining of human sinonasal surgical tissue confirmed the presence of B7-H1, B7-H2, and B7-H3 in the epithelial cell layer, especially in samples from patients diagnosed with Samter's Triad, a severe form of CRS. Real-time PCR analysis of sinonasal tissue revealed elevated levels of B7-H1 and B7-DC in CRS compared with controls. These results demonstrate that epithelial cells express functional B7 costimulatory molecules and that expression of selected B7 family members is inducible in vitro and in vivo. Epithelial B7 homologs could play a role in regulation of lymphocytic activity at mucosal surfaces.  (+info)

The immunomodulatory proteins B7-DC, B7-H2, and B7-H3 are differentially expressed across gestation in the human placenta. (8/88)

Placental trophoblast cells form a cellular barrier between the potentially immunogenic fetus and maternal leukocytes. Trophoblasts subvert maternal immunity by producing surface-bound and soluble factors that interact with maternal leukocytes. Here, we describe the distribution of three members of the expanding family of B7 immunomodulatory molecules: B7-DC, B7-H2, and B7-H3. B7-DC and B7-H3 inhibit antigen-stimulated lymphocyte activation while B7-H2 serves in a regulatory capacity, often promoting a Th2 immunophenotype. First trimester and term placentas, purified trophoblast cells, choriocarcinoma cell lines, and human umbilical vein endothelial cells were analyzed for B7 family RNA and protein expression. Transcripts and proteins for all three B7s were present throughout gestation but were differentially expressed within the trophoblast and the stroma. Whereas B7-DC was prominent on the syncytiotrophoblast of early placenta, it was absent from the trophoblast at term. In contrast, B7-H2 and B7-H3 were prominent on the extravillous trophoblast throughout gestation. Lastly, stromal cells, including macrophages and endothelial cells, differentially expressed B7-DC, B7-H2, and B7-H3, depending on gestational age. Thus, all three of these newly discovered B7 proteins are differentially positioned at the maternal-fetal interface such that they could steer maternal leukocytes away from a harmful immune response and toward a favorable one.  (+info)