Rapid binding of copper(I) to folded aporusticyanin. (73/282)

Kinetics of copper uptake in both oxidation states by the folded and unfolded forms of the type 1 copper protein rusticyanin have been studied. The speed of the binding of copper(I) to the folded rusticyanin is fast, and of the same order of magnitude as copper(I) uptake by the unfolded form. Thus, the binding of copper can be subsequent to the protein folding, contrary to previous proposals. Implications for the mechanism of the formation of the active holoprotein in vivo are discussed.  (+info)

Single molecule recognition between cytochrome C 551 and gold-immobilized azurin by force spectroscopy. (74/282)

Recent developments in single molecule force spectroscopy have allowed investigating the interaction between two redox partners, Azurin and Cytochrome C 551. Azurin has been directly chemisorbed on a gold electrode whereas cytochrome c has been linked to the atomic force microscopy tip by means of a heterobifunctional flexible cross-linker. When recording force-distance cycles, molecular recognition events could be observed, displaying unbinding forces of approximately 95 pN for an applied loading rate of 10 nN/s. The specificity of molecular recognition was confirmed by the significant decrease of unbinding probability observed in control block experiments performed adding free azurin solution in the fluid cell. In addition, the complex dissociation kinetics has been here investigated by monitoring the unbinding forces as a function of the loading rate: the thermal off-rate was estimated to be approximately 14 s(-1), much higher than values commonly estimated for complexes more stable than electron transfer complexes. Results here discussed represent the first studies on molecular recognition between two redox partners by atomic force microscopy.  (+info)

Azurin of pathogenic Neisseria spp. is involved in defense against hydrogen peroxide and survival within cervical epithelial cells. (75/282)

Laz, a lipid-modified azurin of the human pathogens Neisseria gonorrhoeae and Neisseria meningitidis, is involved in defense against oxidative stress and copper toxicity; laz mutant strains are hypersensitive to hydrogen peroxide and copper. The N. gonorrhoeae laz mutant also has decreased survival in an ex vivo primary human ectocervical epithelial assay.  (+info)

Crystal structure of Pseudomonas aeruginosa apo-azurin at 1.85 A resolution. (76/282)

The 3D structure of apo-azurin from Pseudomonas aeruginosa has been determined at 1.85 A resolution. The crystal structure is composed of two different molecular forms of apo-azurin arranged as hetero-dimers in the tetramer of the asymmetric unit. Form 1 closely resembles the holo-protein lacking copper. Form 2 shows differences in the metal binding site region induced by the incorporation of a solvent molecule into this site. The positions of the copper ligands His46 and His117 are shifted by 0.6 A and 1.6 A. The His117 side chain adopts a position at the surface of the protein, thereby facilitating access to the copper site. The presence of two different molecular forms of apo-azurin in the crystal lattice may reflect an equilibrium between the two forms in solution. 1H-NMR spectra of apo-azurin recorded as a function of pH show that at high pH the line broadening of His35, His46 and His117 resonances is consistent with an interconversion between forms 1 and 2. At low pH, no broadening is observed. This may indicate that here the interconversion is fast on the NMR timescale.  (+info)

Expression of Pseudomonas aeruginosa nitrite reductase in Pseudomonas putida and characterization of the recombinant protein. (77/282)

Nitrite reductase from Pseudomonas aeruginosa has been successfully expressed in Pseudomonas putida. The purified recombinant enzyme contains haem c but no haem d1. Nonetheless, like the holoenzyme from Ps. aeruginosa, it is a stable dimer (molecular mass 120 kDa), and electron transfer to oxidized azurin is biphasic and follows bimolecular kinetics (k1 = 1.5 x 10(5) and k2 = 2.2 x 10(4) M-1.s-1). Unlike the chemically produced apoenzyme, recombinant nitrite reductase containing only haem c is water-soluble, stable at neutral pH and can be quantitatively reconstituted with haem d1, yielding a holoenzyme with the same properties as that expressed by Ps. aeruginosa (namely optical and c.d. spectra, molecular mass, cytochrome c551 oxidase activity and CO-binding kinetics).  (+info)

ANS fluorescence detects widespread perturbations of protein tertiary structure in ice. (78/282)

Freeze-induced perturbations of the protein native fold are poorly understood owing to the difficulty of monitoring their structure in ice. Here, we report that binding of the fluorescence probe 1-anilino-8-naphthalene sulfonate (ANS) to proteins in ice can provide a general monitor of ice-induced alterations of their tertiary structure. Experiments conducted with copper-free azurin from Pseudomonas aeruginosa and mutants I7S, F110S, and C3A/C26A correlate the magnitude of the ice-induced perturbation, as inferred from the extent of ANS binding, to the plasticity of the globular fold, increasing with less stable globular folds as well as when the flexibility of the macromolecule is enhanced. The distortion of the native structure inferred from ANS binding was found to draw a parallel with the extent of irreversible denaturation by freeze-thawing, suggesting that these altered conformations play a direct role on freeze damage. ANS binding experiments, extended to a set of proteins including serum albumin, alpha-amylase, beta-galactosidase, alcohol dehydrogenase from horse liver, alcohol dehydrogenase from yeast, lactic dehydrogenase, and aldolase, confirmed that a stressed condition of the native fold in the frozen state appears to be general to most proteins and pointed out that oligomers tend to be more labile than monomers presumably because the globular fold can be further destabilized by subunit dissociation. The results of this study suggest that the ANS binding method may find practical utility in testing the effectiveness of various additives employed in protein formulations as well as to devise safer freeze-drying protocols of pharmaceutical proteins.  (+info)

The alkaline transition of blue copper proteins, Cucumis sativus plastocyanin and Pseudomonas aeruginosa azurin. (79/282)

Autoreduction of Cucumis sativus plastocyanin and Pseudomonas aeruginosa azurin took place at alkaline pHs, having been accompanied by the decrease in the intensities of the charge transfer band, Cys-S- (pi)-->Cu(II) at 597 and 626 nm, and the Cu(II)-EPR signals with small AII values of 6.5 x 10(-3) and 5.3 x 10(-3) cm(-1) for plastocyanin and azurin, respectively. Further, an extra Cu(II)-EPR signal with a large AII value of 21 x 10(-3) cm(-1) also reversibly emerged with increasing pH. Plastocyanin and azurin are in an equilibrium of the three forms at alkaline pHs.  (+info)

Solvation of the folding-transition state in Pseudomonas aeruginosa azurin is modulated by metal: Solvation of azurin's folding nucleus. (80/282)

The role of water in protein folding, specifically its presence or not in the transition-state structure, is an unsolved question. There are two common classes of folding-transition states: diffuse transition states, in which almost all side chains have similar, rather low phi (phi) values, and polarized transition states, which instead display distinct substructures with very high phi-values. Apo-and zinc-forms of Pseudomonas aeruginosa azurin both fold in two-state equilibrium and kinetic reactions; while the apo-form exhibits a polarized transition state, the zinc form entails a diffuse, moving transition state. To examine the presence of water in these two types of folding-transition states, we probed the equilibrium and kinetic consequences of replacing core valines with isosteric threonines at six positions in azurin. In contrast to regular hydrophobic-to-alanine phi-value analysis, valine-to-threonine mutations do not disrupt the core packing but stabilize the unfolded state and can be used to assess the degree of solvation in the folding-transition state upon combination with regular phi-values. We find that the transition state for folding of apo-azurin appears completely dry, while that for zinc-azurin involves partially formed interactions that engage water molecules. This distinct difference between the apo-and holo-folding nuclei can be rationalized in terms of the shape of the free-energy barrier.  (+info)