Crystal structure of the disulfide bond-deficient azurin mutant C3A/C26A: how important is the S-S bond for folding and stability? (17/282)

Azurin has a beta-barrel fold comprising eight beta-strands and one alpha helix. A disulfide bond between residues 3 and 26 connects the N-termini of beta strands beta1 and beta3. Three mutant proteins lacking the disulfide bond were constructed, C3A/C26A, C3A/C26I and a putative salt bridge (SB) in the C3A/S25R/C26A/K27R mutant. All three mutants exhibit spectroscopic properties similar to the wild-type protein. Furthermore, the crystal structure of the C3A/C26A mutant was determined at 2.0 A resolution and, in comparison to the wild-type protein, the only differences are found in the immediate proximity of the mutation. The mutants lose the 628 nm charge-transfer band at a temperature 10-22 degrees C lower than the wild-type protein. The folding of the zinc loaded C3A/C26A mutant was studied by guanidine hydrochloride (GdnHCl) induced denaturation monitored both by fluorescence and CD spectroscopy. The midpoint in the folding equilibrium, at 1.3 M GdnHCl, was observed using both CD and fluorescence spectroscopy. The free energy of folding determined from CD is -24.9 kJ.mol-1, a destabilization of approximately 20 kJ.mol-1 compared to the wild-type Zn2+-protein carrying an intact disulfide bond, indicating that the disulfide bond is important for giving azurin its stable structure. The C3A/C26I mutant is more stable and the SB mutant is less stable than C3A/C26A, both in terms of folding energy and thermal denaturation. The folding intermediate of the wild-type Zn2+-azurin is not observed for the disulfide-deficient C3A/C26A mutant. The rate of unfolding for the C3A/C26A mutant is similar to that of the wild-type protein, suggesting that the site of the mutation is not involved in an early unfolding reaction.  (+info)

Localization of the outer membrane subunit OprM of resistance-nodulation-cell division family multicomponent efflux pump in Pseudomonas aeruginosa. (18/282)

The outer membrane subunit OprM of the multicomponent efflux pump of Pseudomonas aeruginosa has been assumed to form a transmembrane xenobiotic exit channel across the outer membrane. We challenged this hypothesis to clarify the underlying ambiguity by manipulating the amino-terminal signal sequence of the OprM protein of the MexAB-OprM efflux pump in P. aeruginosa. [(3)H]Palmitate uptake experiments revealed that OprM is a lipoprotein. The following lines of evidence unequivocally established that the OprM protein functioned at the periplasmic space. (i) The OprM protein, in which a signal sequence including Cys-18 was replaced with that of periplasmic azurin, appeared in the periplasmic space but not in the outer membrane fraction, and the protein fully functioned as the pump subunit. (ii) The hybrid OprM containing the N-terminal transmembrane segment of the inner membrane protein, MexF, appeared exclusively in the inner membrane fraction. The hybrid protein containing 186 or 331 amino acid residues of MexF was fully active for the antibiotic extrusion, but a 42-residue protein was totally inactive. (iii) The mutant OprM, in which the N-terminal cysteine residue was replaced with another amino acid, appeared unmodified with fatty acid and was fractionated in both the periplasmic space and the inner membrane fraction but not in the outer membrane fraction. The Cys-18-modified OprM functioned for the antibiotic extrusion indistinguishably from that in the wild-type strain. We concluded, based on these results, that the OprM protein was anchored in the outer membrane via fatty acid(s) attached to the N-terminal cysteine residue and that the entire polypeptide moiety was exposed to the periplasmic space.  (+info)

Ferrous iron-dependent volatilization of mercury by the plasma membrane of Thiobacillus ferrooxidans. (19/282)

Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe(2+) medium (pH 2.5) supplemented with 6 microM Hg(2+). In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 microM Hg(2+). When incubated for 3 h in a salt solution (pH 2.5) with 0.7 microM Hg(2+), resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe(2+) was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30 degrees C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe(2+)-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 microM Hg(2+) and 1 mM Fe(2+), plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe(2+)-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe(2+)-dependent mercury volatilization activity of the plasma membrane.  (+info)

Photoinduced intracomplex electron transfer between cytochrome c oxidase and TUPS-modified cytochrome c. (20/282)

A novel method for initiating intramolecular electron transfer in cytochrome c oxidase is reported. The method is based upon photoreduction of cytochrome c labeled with thiouredopyrene-3,6, 8-trisulfonate in complex with cytochrome oxidase. The thiouredopyrene-3,6,8-trisulfonate-labeled cytochrome c was prepared by incubating the thiol reactive form of the dye with yeast iso-1-cytochrome c, containing a single cysteine residue. Laser pulse excitation of a stoichiometrical complex between thiouredopyrene-3,6,8-trisulfonate-cytochrome c and bovine heart cytochrome oxidase at low ionic strength resulted in the reduction of cytochrome c by the excited form of thiouredopyrene-3,6, 8-trisulfonate and subsequent intramolecular electron transfer from the reduced cytochrome c to cytochrome oxidase. The maximum efficiency by a single laser pulse resulted in the reduction of approximately 17% of cytochrome a, and was achieved only at a 1 : 1 ratio of cytochrome c to cytochrome oxidase. At higher cytochrome c to cytochrome oxidase ratios the heme a reduction was strongly suppressed.  (+info)

Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. (21/282)

A nonmucoid clinical isolate of Pseudomonas aeruginosa, strain 808, elaborated ATP-dependent and ATP-independent types of cytotoxic factors in the growth medium. These cytotoxic factors, active against macrophages, were secreted during the exponential phase of growth in a complex medium. Commensurate with the appearance of the cytotoxic activities in the cell-free growth medium, several ATP-utilizing enzymic activities, such as adenylate kinase, nucleoside diphosphate kinase and 5'-nucleotidase (ATPase and/or phosphatase), were detected in the medium. These ATP-utilizing enzymes are believed to convert external ATP, presumably effluxed from macrophages, to various adenine nucleotides, which then activate purinergic receptors such as P2Z, leading to enhanced macrophage cell death. Pretreatment of macrophages with periodate-oxidized ATP (oATP), which is an irreversible inhibitor of P2Z receptor activation, prevented subsequent ATP-induced macrophage cell death. A second type of cytotoxic factor(s) operated in an ATP-independent manner such that it triggered activation of apoptotic processes in macrophages, leading to proteolytic conversion of procaspase-3 to active caspase-3. This cytotoxic factor(s) did not appear to act on procaspase-3 present in macrophage cytosolic extracts. Intact macrophages, when exposed to the cytotoxic factor(s) for 6-16 h, underwent apoptosis and demonstrated the presence of active caspase-3 in their cytosolic extracts. Interestingly, two redox proteins, azurin and cytochrome c(551), were detected in the cytotoxic preparation. When cell-line-derived or peritoneal macrophages or mast cells were incubated overnight with Q-Sepharose column flow-through fraction or with a mixture of azurin and cytochrome c(551), they underwent extensive cell death due to induction of apoptosis.  (+info)

Catalytic and spectroscopic analysis of blue copper-containing nitrite reductase mutants altered in the environment of the type 2 copper centre: implications for substrate interaction. (22/282)

The blue dissimilatory nitrite reductase (NiR) from Alcaligenes xylosoxidans is a trimer containing two types of Cu centre, three type 1 electron transfer centres and three type 2 centres. The latter have been implicated in the binding and reduction of nitrite. The Cu ion of the type 2 centre of the oxidized enzyme is ligated by three His residues, and additionally has a co-ordinated water molecule that is also hydrogen-bonded to the carboxyl of Asp(92) [Dodd, Van Beeumen, Eady and Hasnain (1998), J. Mol. Biol. 282, 369-382]. Two mutations of this residue have been made, one to a glutamic acid residue and a second to an asparagine residue; the effects of both mutations on the spectroscopic and catalytic properties of the enzyme have been analysed. EPR spectroscopy revealed that both mutants retained intact type 1 Cu centres with g( parallel)=2.12 (A( parallel)=0 mT) and g( perpendicular)=2.30 (A( perpendicular)=6.4 mT), which was consistent with their blue colour, but differed in their activities and in the spectroscopic properties of the type 2 centres. The D92E mutant had an altered geometry of its type 2 centre such that nitrite was no longer capable of binding to elicit changes in the EPR parameters of this centre. Accordingly, this mutation resulted in a form of NiR that had very low enzyme activity with the artificial electron donors reduced Methyl Viologen and sodium dithionite. As isolated, the EPR spectrum of the Asp(92)-->Asn (D92N) mutant showed no characteristic type 2 hyperfine lines. However, oxidation with iridium hexachloride partly restored a type 2 EPR signal, suggesting that type 2 copper is present in the enzyme but in a reduced, EPR-silent form. Like the Asp(92)-->Glu mutant, D92N had very low enzyme activities with either Methyl Viologen or dithionite. Remarkably, when the physiological electron donor reduced azurin I was used, both mutant proteins exhibited restoration of enzyme activity. The degree of restoration differed for the two mutants, with the D92N derivative exhibiting approx. 60% of the activity seen for the wild-type NiR. These findings suggest that on formation of an electron transfer complex with azurin, a conformational change in NiR occurs that returns the catalytic Cu centre to a functionally active state capable of binding and reducing nitrite.  (+info)

Deuterium isotope effect on the intramolecular electron transfer in Pseudomonas aeruginosa azurin. (23/282)

Intramolecular electron transfer in azurin in water and deuterium oxide has been studied over a broad temperature range. The kinetic deuterium isotope effect, k(H)/k(D), is smaller than unity (0.7 at 298 K), primarily caused by the different activation entropies in water (-56.5 J K(-1) mol(-1)) and in deuterium oxide (-35.7 J K(-1) mol(-1)). This difference suggests a role for distinct protein solvation in the two media, which is supported by the results of voltammetric measurements: the reduction potential (E(0')) of Cu(2+/+) at 298 K is 10 mV more positive in D(2)O than in H(2)O. The temperature dependence of E(0') is also different, yielding entropy changes of -57 J K(-1) mol(-1) in water and -84 J K(-1) mol(-1) in deuterium oxide. The driving force difference of 10 mV is in keeping with the kinetic isotope effect, but the contribution to DeltaS from the temperature dependence of E(0') is positive rather than negative. Isotope effects are, however, also inherent in the nuclear reorganization Gibbs free energy and in the tunneling factor for the electron transfer process. A slightly larger thermal protein expansion in H(2)O than in D(2)O (0.001 nm K(-1)) is sufficient both to account for the activation entropy difference and to compensate for the different temperature dependencies of E(0'). Thus, differences in driving force and thermal expansion appear as the most straightforward rationale for the observed isotope effect.  (+info)

Structural perturbations of azurin deposited on solid matrices as revealed by trp phosphorescence. (24/282)

The phosphorescence emission of Cd-azurin from Pseudomonas aeruginosa was used as a probe of possible perturbations in the dynamical structure of the protein core that may be induced by protein-sorbent and protein-protein interactions occurring when the macromolecule is deposited into amorphous, thin solid films. Relative to the protein in aqueous solution, the spectrum is unrelaxed and the phosphorescence decay becomes highly heterogeneous, the average lifetime increasing sharply with film thickness and upon its dehydration. According to the lifetime parameter, adsorption of the protein to the substrate is found to produce a multiplicity of partially unfolded structures, an influence that propagates for several protein layers from the surface. Among the substrates used for film deposition, hydrophilic silica, dextran, DEAE-dextran, dextran sulfate, and hydrophobic octodecylamine, the perturbation is smallest with dextran sulfate and largest with octodecylamine. The destabilizing effect of protein-protein interactions, as monitored on 50-layer-thick films, is most evident at a relative humidity of 75%. Stabilizing agents were incorporated to attenuate the deleterious effects of protein aggregation. Among them, the most effective in preserving a more native-like structure are the disaccharides sucrose and trehalose in dry films and the polymer dextran in wet films. Interestingly, the polymer was found to achieve maximum efficacy at sensibly lower additive/protein ratios than the sugars.  (+info)