5-Iodo-A-85380, an alpha4beta2 subtype-selective ligand for nicotinic acetylcholine receptors. (9/572)

In an effort to develop selective radioligands for in vivo imaging of neuronal nicotinic acetylcholine receptors (nAChRs), we synthesized 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-iodo-A-85380) and labeled it with (125)I and (123)I. Here we present the results of experiments characterizing this radioiodinated ligand in vitro. The affinity of 5-[(125)I]iodo-A-85380 for alpha4beta2 nAChRs in rat and human brain is defined by K(d) values of 10 and 12 pM, respectively, similar to that of epibatidine (8 pM). In contrast to epibatidine, however, 5-iodo-A-85380 is more selective in binding to the alpha4beta2 subtype than to other nAChR subtypes. In rat adrenal glands, 5-iodo-A-85380 binds to nAChRs containing alpha3 and beta4 subunits with 1/1000th the affinity of epibatidine, and exhibits 1/60th and 1/190th the affinity of epibatidine at alpha7 and muscle-type nAChRs, respectively. Moreover, unlike epibatidine and cytisine, 5-[(125)I]iodo-A-85380 shows no binding in any brain regions in mice homozygous for a mutation in the beta2 subunit of nAChRs. Binding of 5-[(125)I]iodo-A-85380 in rat brain is reversible, and is characterized by high specificity and a slow rate of dissociation of the receptor-ligand complex (t(1/2) for dissociation approximately 2 h). These properties, along with other features observed previously in in vivo experiments (low toxicity, rapid penetration of the blood-brain barrier, and a high ratio of specific to nonspecific binding), suggest that this compound, labeled with (125)I or (123)I, is superior to other radioligands available for in vitro and in vivo studies of alpha4beta2 nAChRs, respectively.  (+info)

Human neutrophil elastase releases two pools of mucinlike glycoconjugate from tracheal submucosal gland cells. (10/572)

Neutrophil elastase can contribute to the pathogenesis of increased airway reactivity and excess mucus secretion in many pulmonary diseases. Ten nanomolar human neutrophil elastase (HNE) effectively empties airway serous cells, raising the question of why HNE is not equally effective at emptying mucous cells of their stored mucin because total release of mucin granules is not seen in postmortem examination of even the most severe disease. To better resolve the mucus secretagogue action of HNE, we measured secretion of mucinlike glycoconjugates (MGCs) released from freshly isolated swine tracheal submucosal gland cells in fractions of the superfusate acquired every 2 min. Six to fifty nanomolar HNE released a fixed quantity of MGCs at an increasing rate with increasing concentrations of enzyme, an action consistent with the release of cell surface mucinlike molecules. The polycation poly-L-lysine (1 microg/ml) released a similar transient of MGCs. A steady-state doubling of MGC rate of release was seen as long as 100 nM HNE was present, but this stimulus represented less than a 1% release of stored MGCs/min and was consistent with release of mucin vesicles from cell stores. Both actions of HNE were inhibited by the specific inhibitors L-680833 and DMP-777 but not by 30 microM erythromycin. Therefore, HNE release of MGCs from tracheal submucosal glands is limited by both the fixed quantity of the MGCs in the transient pool and by the small steady-state response to the higher concentrations of enzyme.  (+info)

Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH58235, and its glucuronide, SCH60663. (11/572)

Previous studies described the metabolism-based discovery of a potent, selective inhibitor of intestinal absorption of cholesterol, SCH58235 (Ezetimibe). Here we demonstrate that the phenolic glucuronide (SCH60663) of SCH58235, was more potent at inhibiting cholesterol absorption in rats than SCH58235, when administered by the intraduodenal route. To understand the increased potency of the glucuronide, the metabolism and distribution of SCH58235 and SCH60663 were studied in bile duct-cannulated rats. One minute after intraduodenal delivery of SCH58235, significant levels of compound were detected in portal plasma; >95% was glucuronidated, indicating that the intestine was metabolizing SCH58235 to its glucuronide. When intraduodenally delivered as SCH58235, the compound was glucuronidated, moved through the intestinal wall, into portal plasma, through the liver, and into bile. However, when delivered as SCH60663, >95% of the compound remained in the intestinal lumen and wall, which may explain its increased potency. Significant inhibition of cholesterol absorption and glucuronidation of SCH58235 occurred when SCH58235 was intravenously injected into bile duct-cannulated rats. Autoradiographic analysis demonstrated that drug related material was located throughout the intestinal villi, but concentrated in the villus tip. These data indicate that (a) SCH58235 is rapidly metabolized in the intestine to its glucuronide; (b) once glucuronidated, the dose is excreted in the bile, thereby delivering drug related material back to the site of action and (c) the glucuronide is more potent than the parent possibly because it localizes to the intestine. Taken together, these data may explain the potency of SCH58235 in the rat (ID(50) = 0.0015 mg kg(-1)) and rhesus monkey (ID(50) = 0.0005 mg kg(-1)).  (+info)

Nitric oxide modulation of TNF-alpha-induced cardiac contractile dysfunction is concentration dependent. (12/572)

Whereas previous studies suggest that tumor necrosis factor-alpha (TNF-alpha) induces cardiac contraction-relaxation deficits, the mechanisms remain unclear. Our recent studies have implicated cardiac-derived nitric oxide (NO). This study examined the detrimental and protective effects of NO donors S-nitroso-N-acetyl-penicillamine (SNAP) or (Z)-1- [N-(3-ammonio-propyl)-N-(n-propyl)amino]diazen-1-ium- 1,2diolate (PAPA/NO) on TNF-alpha-related changes in cardiac contractile function (Langendorff), cellular injury, and intracellular myocyte Ca(2+) concentration ([Ca(2+)](i)). Myocytes were incubated in the presence/absence of TNF-alpha (200-500 pg/ml x 10(5) cells) for 3 h; subsets of myocytes were incubated with one of several concentrations of SNAP or PAPA/NO (0.1, 0.3, 0.5, and 1.5 mM) for 15 min before TNF-alpha challenge. Supernatant creatine kinase (CK), cell viability (Trypan blue dye exclusion), and myocyte [Ca(2+)](i) (fura 2-acetoxymethyl ester) were measured. In parallel experiments, cardiac function (Langendorff) was examined after TNF-alpha challenge in the presence or absence of SNAP or PAPA/NO (0.1 and 1.5 mM). TNF-alpha in the absence of an NO donor impaired cardiac contraction and relaxation and produced cardiomyocyte injury. Pretreating perfused hearts or isolated cardiomyocytes with a low concentration of either SNAP or PAPA/NO decreased TNF-alpha-mediated cardiac injury and improved contractile dysfunction, whereas high concentrations of NO donor exacerbated TNF-alpha-mediated cardiac effects. These data provide one explanation for the conflicting reports of beneficial versus detrimental effects of NO in the face of inflammation and suggest that the effects of NO on organ function are concentration dependent; low concentrations of NO are cardioprotective, whereas high concentrations of NO are deleterious.  (+info)

Effect of the azetidine and azocine rings of okaramine B on insecticidal activity. (13/572)

Four degraded okaramine B (2) products, 4',5'-dihydrookaramine B (3), two azetidine ring-opened compounds (4 and 5) and 1',2',4',5'-tetrahydrookaramine B (6), were prepared and their insecticidal activity was examined. Neither compounds 4 nor 5 showed such activity against silkworms, indicating that the azetidine ring moiety played an important role in the insecticidal activity. Moreover, both compounds 3 and 6 exhibited lower activity than 2, which means that the azocine ring moiety was indispensable to form the active conformation.  (+info)

Effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes. (14/572)

BDF 9198 (a congener of DPI 201 - 106 and BDF 9148) was found to be a positive inotrope on guinea-pig isolated ventricular muscle strips. The effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes were studied using the whole cell patch clamp method. In normal external solution, at 37 degrees C, action potential duration at 50% repolarization (APD(50)) was 167.4+/-8.36 ms (n=37). BDF 9198 produced a concentration-dependent increase in APD(50) (no significant increase at 1x10(-10) M; and APD(50) values of 273.03+/-35.8 ms at 1x10(-9) M; n=6, P<0.01 and 694.7+/-86.3 ms at 1x10(-7) M; P<0.001, n=7). At higher concentrations in the range tested, BDF 9198 also induced early and delayed and after-depolarizations. Qualitative measurements of I(Na) with physiological [Na](o) showed prolongation of the current by BDF 9198, and the appearance of transient oscillatory inward currents at high concentrations. Quantitative recording conditions for I(Na) were established using low external [Na] and by making measurements at room temperature. The current - voltage relation, activation parameters and time-course of I(Na) were similar before and after a partial blocking dose of Tetrodotoxin (TTX, 1 microM), despite a 2 fold difference in current amplitude. This suggests that voltage-clamp during flow of I(Na) was adequately maintained under our conditions. Selective measurements of I(Na) at room temperature showed that BDF 9198 induced a concentration-dependent, sustained component of I(Na) (I(Late)) and caused a slight left-ward shift in the current - voltage relation for peak current. The drug-induced I(Late) showed a similar voltage dependence to peak current in the presence of BDF 9198. Both peak current and I(Late) were abolished by 30 microM TTX and were sensitive to external [Na]. Inactivation of control I(Na) during a 200 ms test pulse to -30 mV followed a bi-exponential time-course. In addition to inducing a sustained current component, BDF 9198 left the magnitude of the fast inactivation time-constant unchanged, but increased the magnitude of the slow inactivation time-constant. Additional experiments with a longer pulse (1 s) raised the possibility that in the presence of BDF 9198, I(Na) inactivation may be comprised of more than two phases. No significant effects of 1x10(-6) M BDF 9198 were observed on the L-type calcium current, or delayed and inward rectifying potassium currents measured at 37 degrees C. It is concluded that the prolongation of APD(50) by BDF 9198 resulted from selective modulation of I(Na). Reduced current inactivation induced a persistent I(Na), increasing the net depolarizing current during the action potential. This action of the drug indicates a potential for 'QT prolongation' of the ECG. The observation of after-depolarizations suggests a potential for proarrhythmia at some drug concentrations.  (+info)

Measurement of alpha4beta2 nicotinic acetylcholine receptors with [123I]5-I-A-85380 SPECT. (15/572)

Nicotinic acetylcholine receptors (nAChRs) play an important role in tobacco dependence and a potential therapeutic role in neuropsychiatric disorders such as Alzheimer's disease. [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380) is a new SPECT tracer that labels alpha4beta2 nAChRs. The purpose of this study was to assess the usefulness of this tracer to measure regional nAChR binding in baboon brain using both a bolus/kinetic paradigm and also a bolus plus constant infusion/equilibrium paradigm. METHODS: A pair of bolus/kinetic and bolus plus constant infusion/equilibrium studies was performed in each of 3 isoflurane-anesthetized baboons. Bolus studies were performed by intravenous injection of 191-226 MBq [123I]5-I-A-85380 and image acquisition for 289-367 min. The data were analyzed with 1- and 2-tissue compartment models. Bolus plus constant infusion/equilibrium studies were performed by a bolus injection (74-132 MBq) followed by a 468- to 495-min infusion with a bolus/infusion ratio (B/I) of 4.8-5.0 h. The distribution volumes in the thalamus were measured in these 2 paradigms. To study whether the cerebellum was appropriate as a receptor-poor region, displacement studies were done in 2 baboons using the B/I paradigm with subcutaneous injection of (-)-cytisine (0.8 and 1.0 mg/kg). RESULTS: The kinetics of this tracer was best described by the 1-tissue compartment model. The 2-compartment model showed poor identifiability of rate constants. The total (specific plus nondisplaceable compartments) distribution volumes (V(T)') agreed between bolus and B/I paradigms (average percentage difference in V(T)', 16.8%). (-)-Cytisine (0.8 and 1.0 mg/kg) displaced 70% and 72% of the radioactivity in the thalamus and 36% and 55% in the cerebellum, respectively, indicating that the latter was not appropriate as a receptor-poor region. CONCLUSION: These results show the feasibility of quantifying alpha4beta2 nAChRs using [123I]5-I-A-85380 and support the use of V(T)' as an appropriate outcome measure.  (+info)

Identification of a novel nicotinic binding site in mouse brain using [(125)I]-epibatidine. (16/572)

[(125)I]-Epibatidine binds to multiple nicotinic acetylcholine receptor (nAChR) subtypes with high affinity. In this study, [(125)I]-epibatidine was used to label and characterize a novel nAChR subtype found in mouse brain inferior colliculus, interpeduncular nucleus, and olfactory bulb homogenates. Binding of [(125)I]-epibatidine was saturable and apparently monophasic in each brain region (K:(D:)=71+/-12 pM mean+/-s.e.mean across regions) but inhibition of [(125)I]-epibatidine binding (200 pM) by A85380, cytisine and (-)-nicotine was biphasic, indicating the presence of multiple binding sites. The sites with lower agonist affinity comprised 30.0+/-2.2, 58.6+/-0.1 and 48.7+/-3.3% of specific [(125)I]-epibatidine (200 pM) binding in inferior colliculus, interpeduncular nucleus, and olfactory bulb homogenates, respectively. The affinity difference between A85380-sensitive and -resistant binding sites was particularly marked (approximately 1000 fold). Thus A85380 was used to differentiate agonist-sensitive and -resistant sites. The pharmacological profiles of the A85380-resistant sites in each region were assessed with inhibition binding experiments, using 14 agonists and five antagonists. The profiles were indistinguishable across regions, implying that A85380-resistant [(125)I]-epibatidine binding sites in inferior colliculus, interpeduncular nucleus, and olfactory bulb represent a single nAChR subtype. The pharmacological profile of the A85380-resistant sites is very different from that previously reported for high affinity (-)-[(3)H]-nicotine-, [(125)I]-alpha-bungarotoxin-, or [(125)I]-alpha-conotoxin MII-binding sites, suggesting that they represent a novel nAChR population in mouse brain.  (+info)