Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. (49/532)

It was previously shown that newly formed oligodendrocytes depend on axons for their survival, but the nature of the axon-derived survival signal(s) remained unknown. We show here that neuregulin (NRG) supports the survival of purified oligodendrocytes and aged oligodendrocyte precursor cells (OPCs) but not of young OPCs. We demonstrate that axons promote the survival of purified oligodendrocytes and that this effect is inhibited if NRG is neutralized. In the developing rat optic nerve, we provide evidence that delivery of NRG decreases both normal oligodendrocyte death and the extra oligodendrocyte death induced by nerve transection, whereas neutralization of endogenous NRG increases the normal death. These results suggest that NRG is an axon-associated survival signal for developing oligodendrocytes.  (+info)

Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axotomized dorsal root ganglion neurons. (50/532)

Dorsal root ganglion (DRG) neurons produce multiple sodium currents, including several different TTX-sensitive (TTX-S) currents and TTX-resistant (TTX-R) currents, which are produced by distinct sodium channels. We previously demonstrated that, after sciatic nerve transection, the levels of SNS and NaN sodium channel alpha-subunit transcripts and protein in small (18-30 micrometer diameter) DRG neurons are reduced, as are the amplitudes and densities of the slowly inactivating and persistent TTX-R currents produced by these two channels. In this study, we asked whether glial-derived neurotrophic factor (GDNF), which has been shown to prevent some axotomy-induced changes such as the loss of somatostatin expression in DRG neurons, can ameliorate the axotomy-induced downregulation of SNS and NaN TTX-R sodium channels. We show here that exposure to GDNF can significantly increase both slowly inactivating and persistent TTX-R sodium currents, which are paralleled by increases in SNS and NaN mRNA and protein levels, in axotomized DRG neurons in vitro. We also show that intrathecally administered GDNF increases the amplitudes of the slowly inactivating and persistent TTX-R currents, and SNS and NaN protein levels, in peripherally axotomized DRG neurons in vivo. Finally, we demonstrate that GDNF upregulates the persistent TTX-R current in SNS-null mice, thus demonstrating that the upregulated persistent sodium current is not produced by SNS. Because TTX-R sodium channels have been shown to be important in nociception, the effects of GDNF on axotomized DRG neurons may have important implications for the regulation of nociceptive signaling by these cells.  (+info)

Transgenic activation of Ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. (51/532)

Ras is a universal eukaryotic intracellular protein integrating extracellular signals from multiple receptor types. To investigate its role in the adult central nervous system, constitutively activated V12-Ha-Ras was expressed selectively in neurons of transgenic mice via a synapsin promoter. Ras-transgene protein expression increased postnatally, reaching a four- to fivefold elevation at day 40 and persisting at this level, thereafter. Neuronal Ras was constitutively active and a corresponding activating phosphorylation of mitogen-activated kinase was observed, but there were no changes in the activity of phosphoinositide 3-kinase, the phosphorylation of its target kinase Akt/PKB, or expression of the anti-apoptotic proteins Bcl-2 or Bcl-X(L). Neuronal Ras activation did not alter the total number of neurons, but induced cell soma hypertrophy, which resulted in a 14.5% increase of total brain volume. Choline acetyltransferase and tyrosine hydroxylase activities were increased, as well as neuropeptide Y expression. Degeneration of motorneurons was completely prevented after facial nerve lesion in Ras-transgenic mice. Furthermore, neurotoxin-induced degeneration of dopaminergic substantia nigra neurons and their striatal projections was greatly attenuated. Thus, the Ras signaling pathway mimics neurotrophic effects and triggers neuroprotective mechanisms in adult mice. Neuronal Ras activation might become a tool to stabilize donor neurons for neural transplantation and to protect neuronal populations in neurodegenerative diseases.  (+info)

Neuronal MCP-1 expression in response to remote nerve injury. (52/532)

Direct injury of the brain is followed by inflammatory responses regulated by cytokines and chemoattractants secreted from resident glia and invading cells of the peripheral immune system. In contrast, after remote lesion of the central nervous system, exemplified here by peripheral transection or crush of the facial and hypoglossal nerve, the locally observed inflammatory activation is most likely triggered by the damaged cells themselves, that is, the injured neurons. The authors investigated the expression of the chemoattractants monocyte chemoattractant protein MCP-1, regulation on activation normal T-cell expressed and secreted (RANTES), and interferon-gamma inducible protein IP10 after peripheral nerve lesion of the facial and hypoglossal nuclei. In situ hybridization and immunohistochemistry revealed an induction of neuronal MCP-1 expression within 6 hours postoperation, reaching a peak at 3 days and remaining up-regulated for up to 6 weeks. MCP-1 expression was almost exclusively confined to neurons but was also present on a few scattered glial cells. The authors found no alterations in the level of expression and cellular distribution of RANTES or IP10, which were both confined to neurons. Protein expression of the MCP-1 receptor CCR2 did not change. MCP-1, expressed by astrocytes and activated microglia, has been shown to be crucial for monocytic, or T-cell chemoattraction, or both. Accordingly, expression of MCP-1 by neurons and its corresponding receptor in microglia suggests that this chemokine is involved in neuron and microglia interaction.  (+info)

A novel role for protein tyrosine phosphatase shp1 in controlling glial activation in the normal and injured nervous system. (53/532)

Tyrosine phosphorylation regulated by protein tyrosine kinases and phosphatases plays an important role in the activation of glial cells. Here we examined the expression of intracellular protein tyrosine phosphatase SHP1 in the normal and injured adult rat and mouse CNS. Our study showed that in the intact CNS, SHP1 was expressed in astrocytes as well as in pyramidal cells in hippocampus and cortex. Axotomy of peripheral nerves and direct cortical lesion led to a massive upregulation of SHP1 in activated microglia and astrocytes, whereas the neuronal expression of SHP1 was not affected. In vitro experiments revealed that in astrocytes, SHP1 associates with epidermal growth factor (EGF)-receptor, whereas in microglia, SHP1 associates with colony-stimulating factor (CSF)-1-receptor. In postnatal and adult moth-eaten viable (me(v)/me(v)) mice, which are characterized by reduced SHP1 activity, a strong increase in reactive astrocytes, defined by GFAP immunoreactivity, was observed throughout the intact CNS, whereas neither the morphology nor the number of microglial cells appeared modified. Absence of (3)[H]-thymidine-labeled nuclei indicated that astrocytic proliferation does not occur. In response to injury, cell number as well as proliferation of microglia were reduced in me(v)/me(v) mice, whereas the posttraumatic astrocytic reaction did not differ from wild-type littermates. The majority of activated microglia in mutant mice showed rounded and ameboid morphology. However, the regeneration rate after facial nerve injury in me(v)/me(v) mice was similar to that in wild-type littermates. These results emphasize that SHP1 as a part of different signaling pathways plays an important role in the global regulation of astrocytic and microglial activation in the normal and injured CNS.  (+info)

Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons. (54/532)

Developing motoneurons require trophic support from their target, the skeletal muscle. Despite a large number of neurotrophic molecules with survival-promoting activity for isolated embryonic motoneurons, those factors that are required for motoneuron survival during development are still not known. Cytokines of the ciliary neurotrophic factor (CNTF)-leukemia inhibitory factor (LIF) family have been shown to play a role in motoneuron (MN) survival. Importantly, in mice lacking the LIFRbeta or the CNTFRalpha there is a significant loss of MNs during embryonic development. Because genetic deletion of either (or both) CNTF or LIF fails, by contrast, to perturb MN survival before birth, it was concluded that another ligand exists that is functionally inactivated in the receptor deleted mice, resulting in MN loss during development. One possible candidate for this ligand is the CNTF-LIF family member cardiotrophin-1 (CT-1). CT-1 is highly expressed in embryonic skeletal muscle, secreted by myotubes, and promotes the survival of cultured embryonic mouse and rat MNs. Here we show that ct-1 deficiency causes increased motoneuron cell death in spinal cord and brainstem nuclei of mice during a period between embryonic day 14 and the first postnatal week. Interestingly, no further loss was detectable during the subsequent postnatal period, and nerve lesion in young adult ct-1-deficient mice did not result in significant additional loss of motoneurons, as had been previously observed in mice lacking both CNTF and LIF. CT-1 is the first bona fide muscle-derived neurotrophic factor to be identified that is required for the survival of subgroups of developing motoneurons.  (+info)

Nerve growth factor antiserum induces axotomy-like changes in neuropeptide expression in intact sympathetic and sensory neurons. (55/532)

Axonal transection of adult sympathetic and sensory neurons leads to a decrease in their content of target-derived nerve growth factor (NGF) and to dramatic changes in the expression of several neuropeptides and enzymes involved in transmitter biosynthesis. For example, axotomy of sympathetic neurons in the superior cervical ganglion (SCG) dramatically increases levels of galanin, vasoactive intestinal peptide (VIP), and substance P and their respective mRNAs and decreases mRNA levels for neuropeptide Y (NPY) and tyrosine hydroxylase (TH). Axotomy of sensory neurons in lumbar dorsal root ganglia (DRG) increases protein and mRNA levels for galanin and VIP and decreases levels for substance P and calcitonin gene-related peptide (CGRP). To assess whether reduction in the availability of endogenous NGF might play an important role in triggering these changes, we injected nonoperated animals with an antiserum against NGF (alphaNGF). alphaNGF increased levels of peptide and mRNA for galanin and VIP in neurons in both the SCG and DRG. NPY protein and mRNA were decreased in the SCG, but levels of TH protein and mRNA remained unchanged. In sensory neurons the levels of SP and CGRP protein decreased after alphaNGF treatment. These data suggest that the reduction in levels of NGF in sympathetic and sensory neurons after axotomy is partly responsible for the subsequent changes in neuropeptide expression. Thus, the peptide phenotype of these axotomized neurons is regulated both by the induction of an "injury factor," leukemia inhibitory factor, as shown previously, and by the reduction in a target-derived growth factor.  (+info)

Axotomy- and autotomy-induced changes in the excitability of rat dorsal root ganglion neurons. (56/532)

The spontaneous, ectopic activity in sensory nerves that is induced by peripheral nerve injury is thought to contribute to the generation of "neuropathic" pain in humans. To examine the cellular mechanisms that underlie this activity, neurons in rat L(4)-L(5) dorsal root ganglion (DRG) were first grouped as "large," "medium," or "small" on the basis of their size (input capacitance) and action potential (AP) shape. A fourth group of cells that exhibited a pronounced afterdepolarization (ADP) were defined as AD-cells. Whole cell recording was used to compare the properties of control neurons with those dissociated from rats in which the sciatic nerve had been sectioned ("axotomy" group) and with neurons from rats that exhibited self-mutilatory behavior in response to sciatic nerve section ("autotomy" group). Increases in excitability in all types of DRG neuron were seen within 2-7 wk of axotomy. Resting membrane potential (RMP) and the amplitude and duration of the afterhyperpolarization (AHP) that followed the AP were unaffected. Effects of axotomy were greatest in the small, putative nociceptive cells and least in the large cells. Moderate changes were seen in the medium and AD-cells. Compared to control neurons, axotomized neurons exhibited a higher frequency of evoked AP discharge in response to 500-ms depolarizing current injections; i.e., "gain" was increased and accommodation was decreased. The minimum current required to discharge an AP (rheobase) was reduced. There were significant increases in spike width in small cells and significant increases in spike height in small, medium, and AD-cells. The electrophysiological changes promoted by axotomy were intensified in animals that exhibited autotomy; spike height, and spike width were significantly greater than control for all cell types. Under our experimental conditions, spontaneous activity was never encountered in neurons dissociated from animals that exhibited autotomy. Thus changes in the electrical properties of cell bodies alone may not entirely account for injury-induced spontaneous activity in sensory nerves. The onset of autotomy coincided with alterations in the excitability of large, putative nonnociceptive, neurons. Thus large cells from the autotomy group were much more excitable than those from the axotomy group, whereas small cells from the autotomy group were only slightly more excitable. This is consistent with the hypothesis that the onset of autotomy is associated with changes in the properties of myelinated fibers. Changes in Ca2+ and K+ channel conductances that contribute to axotomy- and autotomy-induced changes in excitability are addressed in the accompanying paper.  (+info)