Survival of axotomized retinal ganglion cells in peripheral nerve-grafted ferrets. (17/532)

PURPOSE: Peripheral nerve (PN) grafting to the optic nerve stump stimulates not only axonal regeneration of the axotomized retinal ganglion cells (RGCs) into the grafted PN but also their survival. The purpose of the present study was to determine the number, distribution, and soma diameter of only surviving RGCs without regenerated axons and surviving RGCs with regenerated axons in PN-grafted mammals. METHODS: A segment of PN was grafted to the optic nerve stump of adult ferrets. Two months after the PN grafting, surviving RGCs with regenerated axons were retrogradely labeled with granular blue (GB) and stained with RGC-specific antibody C38. Surviving RGCs without regenerated axons were identified as C38-positive cells without GB labeling. RESULTS: Twenty-one percent of RGCs survived axotomy after PN grafting in the area centralis (AC), whereas 47% survived in the peripheral retina. Twenty-six percent of surviving RGCs in the AC exhibited axonal regeneration, which was higher than that in the peripheral retina. Soma diameter histograms revealed that RGCs with regenerated axons showing both GB and C38 positivity were in the large soma diameter ranges. In contrast, the soma diameter distribution of surviving RGCs that did not have regenerated axons showed a peak in the smaller soma diameter ranges. CONCLUSIONS: The present data suggest that PN grafting promotes survival of axotomized RGCs more effectively in the peripheral retina than in the AC. Among surviving RGCs, the larger cells exhibited axonal regeneration into the grafted PN, whereas the axons of smaller cells did not to regenerate in either the AC or the peripheral retina.  (+info)

Both the neuronal and inducible isoforms contribute to upregulation of retinal nitric oxide synthase activity by brain-derived neurotrophic factor. (18/532)

Although neurotrophins are best known for their trophic functions, growing evidence suggests that neurotrophins can also be neurotoxic, for instance by enhancing excitotoxic insults. We have shown recently that brain-derived neurotrophic factor (BDNF) limits its neuroprotective action on axotomized rat retinal ganglion cells (RGCs) by upregulating nitric oxide synthase (NOS) activity (Klocker et al., 1998). The aim of the present study was to investigate this interaction of BDNF and NOS in the lesioned adult rat retina in more detail. We used NOS immunohistochemistry and NADPH-diaphorase (NADPH-d) reaction to characterize morphologically retinal NOS expression and activity. Using reverse transcription-PCR and Western blot analysis, we were able to identify the NOS isoforms being regulated. Six days after optic nerve lesion, we observed an increase in neuronal NOS (NOS-I) mRNA and protein expression in the inner retina. This did not lead to a marked increase in overall retinal NOS activity. Only RGC axons displayed strong de novo NADPH-d reactivity. In contrast, intraocular injection of BDNF resulted in a marked upregulation of NOS activity in NOS-I-immunoreactive structures, leaving the level of NOS-I expression unchanged. In addition, an induction of inducible NOS (NOS-II) was found after BDNF treatment. We identified microglial cells increasing in number and being activated by BDNF, which could serve as the cellular source of NOS-II. In summary, our data suggest that BDNF upregulates retinal NOS activity by both a post-translational regulation of NOS-I activity and an induction of NOS-II. These findings might be useful for developing pharmacological strategies to improve BDNF-mediated neuroprotection.  (+info)

Rapid loss of dorsal horn lectin binding after massive brachial plexus axotomy in young rats. (19/532)

Lectins are proteins with binding affinities for specific sugars in complex glycoconjugates, some of which have been implicated in limiting synaptic plasticity or modulating nerve growth and guidance. We studied the expression of the glycoconjugate recognized by the isolectin B4 of Griffonia simplicifolia (Gs-IB4) in spinal dorsal horns after massive axotomy of the brachial plexus in weanling rats. Gs-IB4+ binding sites in Rexed's lamina II were rapidly reduced after massive peripheral axotomy. This rapid loss suggests that multiple nerve lesions minimize the number of intact fibers that converge with lesioned fibers into the same cord segments and thus may prevent the plastic changes accompanying the lesion of single nerves.  (+info)

Transduction of axotomized retinal ganglion cells by adenoviral vector administration at the optic nerve stump: an in vivo model system for the inhibition of neuronal apoptotic cell death. (20/532)

Axotomy of the rat optic nerve leads to apoptotic cell death of retinal ganglion cells (RGCs). We have used adenoviral vectors to transduce RGCs from the cut optic nerve stump, a paradigm in which only those neurons are transduced which are directly affected by the axonal lesion. Transgenes encoded by the vectors were p35 and CrmA, which are potent intracellular anti-apoptotic proteins. We found that p35, but not CrmA exerted significant rescue effects on RGCs 14 days after axotomy. Expression of the transgenes was driven by the murine CMV (MCMV) promoter. The respective mRNAs were detectable 7 days but not 14 days after transduction. Since surviving RGCs were present beyond the time-point of detectable transcription of the p35 transgene, we conclude that apoptosis has been efficiently inhibited. In addition, we observed that transduction with two control vectors without a transgene in E1 also resulted in a minor but significant RGC rescue, implicating neuroprotective effects due to adenoviral transduction itself. This system will be useful in dissecting the pathways leading to neuronal cell death after axonal lesions and in the evaluation of the important question whether the cellular suicide program can be reverted to survival by therapeutic gene delivery.  (+info)

Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. (21/532)

The signals that prompt the axons to send out processes in peripheral nerves after axotomy are not well understood. Here, we report that galectin-1 can play an important role in this initial stage. We developed an in vitro nerve regeneration model that allows us to monitor the initial axon and support cell outgrowth from the proximal nerve stump, which is comparable to the initial stages of nerve repair. We isolated a factor secreted from COS1 cells that enhanced axonal regeneration, and we identified the factor as galectin-1. Recombinant human galectin-1 (rhGAL-1) showed the same activity at low concentrations (50 pg/ml) that are two orders of magnitude lower than those of lectin activity. A similarly low concentration was also effective in in vivo experiments of axonal regeneration with migrating reactive Schwann cells to a grafted silicone tube after transection of adult rat peripheral nerve. Moreover, the application of functional anti-rhGAL-1 antibody strongly inhibited the regeneration in vivo as well as in vitro. The same effect of rhGAL-1 was confirmed in crush/freeze experiments of the adult mouse sciatic nerve. Because galectin-1 is expressed in the regenerating sciatic nerves as well as in both sensory neurons and motor neurons, we suggest that galectin-1 may regulate initial repair after axotomy. This high activity of the factor applied under nonreducing conditions suggests that galectin-1 may work as a cytokine, not as a lectin.  (+info)

The glial cell line-derived neurotrophic factor family receptor components are differentially regulated within sensory neurons after nerve injury. (22/532)

Glial cell line-derived neurotrophic factor (GDNF) has potent trophic effects on adult sensory neurons after nerve injury and is one of a family of proteins that includes neurturin, persephin, and artemin. Sensitivity to these factors is conferred by a receptor complex consisting of a ligand binding domain (GFRalpha1-GFRalpha4) and a signal transducing domain RET. We have investigated the normal expression of GDNF family receptor components within sensory neurons and the response to nerve injury. In normal rats, RET and GFRalpha1 were expressed in a subpopulation of both small- and large-diameter afferents projecting through the sciatic nerve [60 and 40% of FluoroGold (FG)-labeled cells, respectively]. GFRalpha2 and GFRalpha3 were both expressed principally within small-diameter DRG cells (30 and 40% of FG-labeled cells, respectively). Two weeks after sciatic axotomy, the expression of GFRalpha2 was markedly reduced (to 12% of sciatic afferents). In contrast, the proportion of sciatic afferents that expressed GFRalpha1 increased (to 66% of sciatic afferents) so that virtually all large-diameter afferents expressed this receptor component, and the expression of GFRalpha3 also increased (to 66% of sciatic afferents) so that almost all of the small-diameter afferents expressed this receptor component after axotomy. There was little change in RET expression. The changes in the proportions of DRG cells expressing different receptor components were mirrored by alterations in the total RNA levels within the DRG. The changes in GFRalpha1 and GFRalpha2 expression after axotomy could be largely reversed by treatment with GDNF.  (+info)

Nerve injury induces gap junctional coupling among axotomized adult motor neurons. (23/532)

Neonatal spinal motor neurons are electrically and dye-coupled by gap junctions, but coupling is transient and disappears rapidly after birth. Here we report that adult motor neurons become recoupled by gap junctions after peripheral nerve injury. One and 4-6 weeks after nerve cut, clusters of dye-coupled motor neurons were observed among axotomized, but not control, lumbar spinal motor neurons in adult cats. Electrical coupling was not apparent, probably because of the electrotonic distance between dendrodendritic gap junctions and the somatic recording location. Analyses of gap junction protein expression in cat and rat showed that the repertoire of connexins expressed by normal adult motor neurons, Cx36, Cx37, Cx40, Cx43, and Cx45, was unchanged after axotomy. Our results suggest that the reestablishment of gap junctional coupling among axotomized adult motor neurons may occur by modulation of existing gap junction proteins that are constitutively expressed by motor neurons. After injury, interneuronal gap junctional coupling may mediate signaling that maintains the viability of axotomized motor neurons until synaptic connections are reestablished within their targets.  (+info)

Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 In vivo. (24/532)

Recently we have shown that the majority of retinal ganglion cells (RGCs) dies via activation of caspase-3 after transection of the optic nerve (ON) in the adult rat. In the present study we investigated whether insulin-like growth factor-I (IGF-I), an important factor in retinal development, prevents secondary death of RGCs after axotomy. Moreover, we studied potential intracellular mechanisms of IGF-mediated neuroprotection in more detail. Our results indicate that intraocular application of IGF-I protects RGCs from death after ON transection in a dose-dependent manner. We show reduced caspase-3 activity as one possible neuroprotective mechanism of IGF-I treatment in vivo. Caspase-3 mRNA expression remained unchanged. Because caspase inhibition can be mediated by Akt in vitro, we examined phosphorylation of Akt after axotomy and under IGF treatment. Western blot analysis revealed decreased Akt phosphorylation after axotomy without treatment and an increased phosphorylation of Akt under treatment with IGF-I. This strong increase could be reduced by simultaneous injection of wortmannin (WM), a potent inhibitor of phosphatidylinositol 3-kinase (PI3-K). To prove the pathway suggested by these experiments as relevant for the in vivo situation, we assessed the number of RGCs 14 d after ON transection under a combined treatment strategy of IGF-I and WM. As expected, WM significantly reduced the neuroprotective effects of IGF-I. In summary, we show for the first time in vivo that IGF is neuroprotective via PI3-K-dependent Akt phosphorylation and by inhibition of caspase-3.  (+info)