Hepatitis B virus taxonomy and hepatitis B virus genotypes. (9/18)

Hepatitis B virus (HBV) is a member of the hepadnavirus family. Hepadnaviruses can be found in both mammals (orthohepadnaviruses) and birds (avihepadnaviruses). The genetic variability of HBV is very high. There are eight genotypes of HBV and three clades of HBV isolates from apes that appear to be additional genotypes of HBV. Most genotypes are now divided into subgenotypes with distinct virological and epidemiological properties. In addition, recombination among HBV genotypes increases the variability of HBV. This review summarises current knowledge of the epidemiology of genetic variability in hepadnaviruses and, due to rapid progress in the field, updates several recent reviews on HBV genotypes and subgenotypes.  (+info)

Avian hepatitis B viruses: molecular and cellular biology, phylogenesis, and host tropism. (10/18)

The human hepatitis B virus (HBV) and the duck hepatitis B virus (DHBV) share several fundamental features. Both viruses have a partially double-stranded DNA genome that is replicated via a RNA intermediate and the coding open reading frames (ORFs) overlap extensively. In addition, the genomic and structural organization, as well as replication and biological characteristics, are very similar in both viruses. Most of the key features of hepadnaviral infection were first discovered in the DHBV model system and subsequently confirmed for HBV. There are, however, several differences between human HBV and DHBV. This review will focus on the molecular and cellular biology, evolution, and host adaptation of the avian hepatitis B viruses with particular emphasis on DHBV as a model system.  (+info)

Thermodynamics and NMR studies on Duck, Heron and Human HBV encapsidation signals. (11/18)

Hepatitis B virus (HBV) replication is initiated by binding of its reverse transcriptase (P) to the apical stem-loop (AL) and primer loop (PL) of epsilon, a highly conserved RNA element at the 5'-end of the RNA pregenome. Mutation studies on duck/heron and human in vitro systems have shown similarities but also differences between their P-epsilon interaction. Here, NMR and UV thermodynamic data on AL (and PL) from these three species are presented. The stabilities of the duck and heron ALs were found to be similar, and much lower than that of human. NMR data show that this low stability stems from an 11-nt internal bulge destabilizing the stem of heron AL. In duck, although structured at low temperature, this region also forms a weak point as its imino resonances broaden to disappearance between 30 and 35 degrees C well below the overall AL melting temperature. Surprisingly, the duck- and heron ALs were both found to be capped by a stable well-structured UGUU tetraloop. All avian ALs are expected to adhere to this because of their conserved sequence. Duck PL is stable and structured and, in view of sequence similarities, the same is expected for heron - and human PL.  (+info)

Monoclonal antibodies providing topological information on the duck hepatitis B virus core protein and avihepadnaviral nucleocapsid structure. (12/18)

The icosahedral capsid of duck hepatitis B virus (DHBV) is formed by a single core protein species (DHBc). DHBc is much larger than HBc from human HBV, and no high-resolution structure is available. In an accompanying study (M. Nassal, I. Leifer, I. Wingert, K. Dallmeier, S. Prinz, and J. Vorreiter, J. Virol. 81:13218-13229, 2007), we used extensive mutagenesis to derive a structural model for DHBc. For independent validation, we here mapped the epitopes of seven anti-DHBc monoclonal antibodies. Using numerous recombinant DHBc proteins and authentic nucleocapsids from different avihepadnaviruses as test antigens, plus a panel of complementary assays, particle-specific and exposed plus buried linear epitopes were revealed. These data fully support key features of the model.  (+info)

Heterologous replacement of the supposed host determining region of avihepadnaviruses: high in vivo infectivity despite low infectivity for hepatocytes. (13/18)

 (+info)

Protein X of hepatitis B virus: origin and structure similarity with the central domain of DNA glycosylase. (14/18)

 (+info)

Avihepadnavirus diversity in parrots is comparable to that found amongst all other avian species. (15/18)

 (+info)

Previously unsuspected cis-acting sequences for DNA replication revealed by characterization of a chimeric heron/duck hepatitis B virus. (16/18)

Heron hepatitis B virus (HHBV) is an avian hepadnavirus that is closely related to duck hepatitis B virus (DHBV). To learn more about the mechanism of hepadnavirus replication, we characterized a clone of HHBV that contains a substitution of DHBV sequence from nucleotide coordinates 403 to 1364. This clone, named HDE1, expresses a chimeric pregenomic RNA, a chimeric polymerase (P) protein, and a core (C) protein with a one-amino-acid substitution at its carboxy terminus. We have shown that HDE1 is defective for minus-strand DNA synthesis, resulting in an overall reduction of viral DNA. HDE1 was also defective for plus-strand DNA synthesis, resulting in aberrant ratios of replication intermediates. Genetic complementation assays indicated that HDE1 replication proteins, C and P, are functional for replication and wild-type HHBV proteins do not rescue either defect. These findings indicate that the HDE1 substitution mutation acts primarily in cis. By restoring nucleotides 403 to 902 to the HHBV sequence, we showed that cis-acting sequences for plus-strand DNA synthesis are located in the 5' half of the HDE1 chimeric region. These data indicate the presence of one or more formerly unrecognized cis-acting sequences for DNA synthesis within the chimeric region (nucleotides 403 to 1364). These cis-acting sequences in the middle of the genome might interact directly or indirectly with known cis elements that are located near the ends of the genome. Our findings suggest that a specific higher-order template structure is involved in the mechanism of hepadnavirus DNA replication.  (+info)