The central proline of an internal viral fusion peptide serves two important roles. (25/1585)

The fusion peptide of the avian sarcoma/leukosis virus (ASLV) envelope protein (Env) is internal, near the N terminus of its transmembrane (TM) subunit. As for most internal viral fusion peptides, there is a proline near the center of this sequence. Robson-Garnier structure predictions of the ASLV fusion peptide and immediate surrounding sequences indicate a region of order (beta-sheet), a tight reverse turn containing the proline, and a second region of order (alpha-helix). Similar motifs (order, turn or loop, order) are predicted for other internal fusion peptides. In this study, we made and analyzed 12 Env proteins with substitutions for the central proline of the fusion peptide. Env proteins were expressed in 293T cells and in murine leukemia virus pseudotyped virions. We found the following. (i) All mutant Envs form trimers, but when the bulky hydrophobic residues phenylalanine or leucine are substituted for proline, trimerization is weakened. (ii) Surprisingly, the proline is required for maximal processing of the Env precursor into its surface and TM subunits; the amount of processing correlates linearly with the propensity of the substituted residue to be found in a reverse turn. (iii) Nonetheless, proteolytically processed forms of all Envs are preferentially incorporated into pseudotyped virions. (iv) All Envs bind receptor with affinity greater than or equal to wild-type affinity. (v) Residues that support high infectivity cluster with proline at intermediate hydrophobicity. Infectivity is not supported by mutant Envs in which charged residues are substituted for proline, nor is it supported by the trimerization-defective phenylalanine and leucine mutants. Our findings suggest that the central proline in the ASLV fusion peptide is important for the formation of the native (metastable) Env structure as well as for membrane interactions that lead to fusion.  (+info)

CBP/p300 interact with and function as transcriptional coactivators of BRCA1. (26/1585)

BRCA1 is a breast and ovarian cancer-specific tumor suppressor, with properties of a transcription factor involved in DNA repair. We previously have shown the transactivation of heterologous promoters by the carboxyl terminus of BRCA1. We now describe that BRCA1-mediated transactivation is enhanced by p300/CBP (CREB binding protein) and that this effect was suppressed by the adenovirus E1A oncoprotein. We show a physical association of BRCA1 with the transcriptional coactivators/acetyltransferases p300 and CBP. Endogenous as well as overexpressed BRCA1 and p300 were found to associate in a phosphorylation-independent manner. BRCA1 interacts with the cAMP response element binding protein (CREB) domain of p300/CBP via both its amino and carboxyl termini. Finally, full-length BRCA1 is shown to transcriptionally activate the Rous sarcoma virus-long terminal repeat promoter, which was further stimulated by p300. Immunocolocalization analyses suggest that BRCA1 and p300 associate in a cell cycle-dependent manner. Our results support a role for BRCA1 in transcription.  (+info)

beta-catenin in epithelial morphogenesis: conversion of part of avian foot scales into feather buds with a mutated beta-catenin. (27/1585)

We explored the role of beta-catenin in chicken skin morphogenesis. Initially beta-catenin mRNA was expressed at homogeneous levels in the epithelia over a skin appendage tract field which became transformed into a periodic pattern corresponding to individual primordia. The importance of periodic patterning was shown in scaleless mutants, in which beta-catenin was initially expressed normally, but failed to make a punctuated pattern. To test beta-catenin function, a truncated armadillo fragment was expressed in developing chicken skin from the RCAS retrovirus. This produced a variety of phenotypic changes during epithelial appendage morphogenesis. In apteric and scale-producing regions, new feather buds with normal-appearing follicle sheaths, dermal papillae, and barb ridges were induced. In feather tracts, short, wide, and curled feather buds with abnormal morphology and random orientation formed. Epidermal invaginations and placode-like structures formed in the scale epidermis. PCNA staining and the distribution of molecular markers (SHH, NCAM, Tenascin-C) were characteristic of feather buds. These results suggest that the beta-catenin pathway is involved in modulating epithelial morphogenesis and that increased beta-catenin pathway activity can increase the activity of skin appendage phenotypes. Analogies between regulated and deregulated new growths are discussed.  (+info)

beta1 integrins regulate keratinocyte adhesion and differentiation by distinct mechanisms. (28/1585)

In keratinocytes, the beta1 integrins mediate adhesion to the extracellular matrix and also regulate the initiation of terminal differentiation. To explore the relationship between these functions, we stably infected primary human epidermal keratinocytes and an undifferentiated squamous cell carcinoma line, SCC4, with retroviruses encoding wild-type and mutant chick beta1 integrin subunits. We examined the ability of adhesion-blocking chick beta1-specific antibodies to inhibit suspension-induced terminal differentiation of primary human keratinocytes and the ability of the chick beta1 subunit to promote spontaneous differentiation of SCC4. A D154A point mutant clustered in focal adhesions but was inactive in the differentiation assays, showing that differentiation regulation required a functional ligand-binding domain. The signal transduced by beta1 integrins in normal keratinocytes was "do not differentiate" (transduced by ligand-occupied receptors) as opposed to "do differentiate" (transduced by unoccupied receptors), and the signal depended on the absolute number, rather than on the proportion, of occupied receptors. Single and double point mutations in cyto-2 and -3, the NPXY motifs, prevented focal adhesion targeting without inhibiting differentiation control. However, deletions in the proximal part of the cytoplasmic domain, affecting cyto-1, abolished the differentiation-regulatory ability of the beta1 subunit. We conclude that distinct signaling pathways are involved in beta1 integrin-mediated adhesion and differentiation control in keratinocytes.  (+info)

The catalytic subunit of phosphoinositide 3-kinase: requirements for oncogenicity. (29/1585)

The retroviral oncogene p3k (v-p3k) of avian sarcoma virus 16 (ASV16) codes for the catalytic subunit of phosphoinositide (PI) 3-kinase, p110alpha. The v-P3k protein is oncogenic in vivo and in vitro; its cellular counterpart, c-P3k, lacks oncogenicity. Fusion of viral Gag sequences to the amino terminus of c-P3k activates the transforming potential. Activation can also be achieved by the addition of a myristylation signal to the amino terminus or of a farnesylation signal to the carboxyl terminus of c-P3k. A mutated myristylation signal was equally effective; it also caused a strong increase in the kinase activity of P3k. Mutations that inactivate lipid kinase activity abolish oncogenicity. The transforming activity of P3k is correlated with the ability to induce activating phosphorylation in Akt. Point mutations and amino-terminal deletions recorded in v-P3k were shown to be irrelevant to the activation of oncogenic potential. Interactions of P3k with the regulatory subunit of PI 3-kinase, p85, or with Ras are not required for transformation. These results support the conclusion that the oncogenicity of P3k depends on constitutive lipid kinase activity. Akt is an important and probably essential downstream component of the oncogenic signal from P3k.  (+info)

Asymmetric subunit organization of heterodimeric Rous sarcoma virus reverse transcriptase alphabeta: localization of the polymerase and RNase H active sites in the alpha subunit. (30/1585)

The genes encoding the alpha (63-kDa) and beta (95-kDa) subunits of Rous sarcoma virus (RSV) reverse transcriptase (RT) or the entire Pol polypeptide (99 kDa) were mutated in the conserved aspartic acid residue Asp 181 of the polymerase active site (YMDD) or in the conserved Asp 505 residue of the RNase H active site. We have analyzed heterodimeric recombinant RSV alphabeta and alphaPol RTs within which one subunit was selectively mutated. When alphabeta heterodimers contained the Asp 181-->Asn mutation in their beta subunits, about 42% of the wild-type polymerase activity was detected, whereas when the heterodimers contained the same mutation in their alpha subunits, only 7.5% of the wild-type polymerase activity was detected. Similar results were obtained when the conserved Asp 505 residue of the RNase H active site was mutated to Asn. RNase H activity was clearly detectable in alphabeta heterodimers mutated in the beta subunit but was lost when the mutation was present in the alpha subunit. In summary, our data imply that the polymerase and RNase H active sites are located in the alpha subunit of the heterodimeric RSV RT alphabeta.  (+info)

Structural and biochemical studies of retroviral proteases. (31/1585)

Retroviral proteases form a unique subclass of the family of aspartic proteases. These homodimeric enzymes from a number of viral sources have by now been extensively characterized, both structurally and biochemically. The importance of such knowledge to the development of new drugs against AIDS has been, to a large extent, the driving force behind this progress. High-resolution structures are now available for enzymes from human immunodeficiency virus types 1 and 2, simian immunodeficiency virus, feline immunodeficiency virus, Rous sarcoma virus, and equine infectious anemia virus. In this review, structural and biochemical data for retroviral proteases are compared in order to analyze the similarities and differences between the enzymes from different sources and to enhance our understanding of their properties.  (+info)

Mutational analysis of the subgroup A avian sarcoma and leukosis virus putative fusion peptide domain. (32/1585)

Short hydrophobic regions referred to as fusion peptide domains (FPDs) at or near the amino terminus of the membrane-anchoring subunit of viral glycoproteins are believed to insert into the host membrane during the initial stage of enveloped viral entry. Avian sarcoma and leukosis viruses (ASLV) are unusual among retroviruses in that the region in the envelope glycoprotein (EnvA) proposed to be the FPD is internal and contains a centrally located proline residue. To begin analyzing the function of this region of EnvA, 20 substitution mutations were introduced into the putative FPD. The mutant envelope glycoproteins were evaluated for effects on virion incorporation, receptor binding, and infection. Interestingly, most of the single-substitution mutations had little effect on any of these processes. In contrast, a bulky hydrophobic substitution for the central proline reduced viral titers 15-fold without affecting virion incorporation or receptor binding, whereas substitution of glycine for the proline had only a nominal effect on EnvA function. Similar to other viral FPDs, the putative ASLV FPD has been modeled as an amphipathic helix where most of the bulky hydrophobic residues form a patch on one face of the helix. A series of alanine insertion mutations designed to interrupt the hydrophobic patch on the helix had differential effects on infectivity, and the results of that analysis together with the results observed with the substitution mutations suggest no correlation between maintenance of the hydrophobic patch and glycoprotein function.  (+info)