Soluble forms of the subgroup A avian leukosis virus [ALV(A)] receptor Tva significantly inhibit ALV(A) infection in vitro and in vivo. (41/1107)

The interactions between the subgroup A avian leukosis virus [ALV(A)] envelope glycoproteins and soluble forms of the ALV(A) receptor Tva were analyzed both in vitro and in vivo by quantitating the ability of the soluble Tva proteins to inhibit ALV(A) entry into susceptible cells. Two soluble Tva proteins were tested: the 83-amino-acid Tva extracellular region fused to two epitope tags (sTva) or fused to the constant region of the mouse immunoglobulin G heavy chain (sTva-mIgG). Replication-competent ALV-based retroviral vectors with subgroup B or C env were used to deliver and express the two soluble tv-a (stva) genes in avian cells. In vitro, chicken embryo fibroblasts or DF-1 cells expressing sTva or sTva-mIgG proteins were much more resistant to infection by ALV(A) ( approximately 200-fold) than were control cells infected by only the vector. The antiviral effect was specific for ALV(A), which is consistent with a receptor interference mechanism. The antiviral effect of sTva-mIgG was positively correlated with the amount of sTva-mIgG protein. In vivo, the stva genes were delivered and expressed in line 0 chicken embryos by the ALV(B)-based vector RCASBP(B). Viremic chickens expressed relatively high levels of stva and stva-mIgG RNA in a broad range of tissues. High levels of sTva-mIgG protein were detected in the sera of chickens infected with RCASBP(B)stva-mIgG. Viremic chickens infected with RCASBP(B) alone, RCASBP(B)stva, or RCASBP(B)stva-mIgG were challenged separately with ALV(A) and ALV(C). Both sTva and sTva-mIgG significantly inhibited infection by ALV(A) (95 and 100% respectively) but had no measurable effect on ALV(C) infection. The results of this study indicate that a soluble receptor can effectively block infection of at least some retroviruses and demonstrates the utility of the ALV experimental system in characterizing the mechanism(s) of viral entry.  (+info)

Hindbrain respecification in the retinoid-deficient quail. (42/1107)

We report here the development and rescue of the truncated hindbrain of retinoid-deprived quail embryos. The embryo is completely rescued by an injection of retinol into the egg; this confirms retinol, or a related retinoid, as a required molecule in hindbrain development. Staging the retinoid replacement enabled us to determine that the 3-4 somite stage is the period when retinoids are required for normal development. Analysis of the development of the retinoid-deprived hindbrain phenotype through somitogenesis has revealed a pathway of retinoid action in early hindbrain regionalization. The hindbrain of the retinoid-deprived embryo is normal in size, during early somitogenesis, but has a respecified pattern of Krox-20 expression. From the earliest expression of Krox-20, at the 5 somite stage, the rhombomere 3 stripe fills the caudal third of the developing hindbrain to the level of the first somite. Morphologically only 2, instead of the normal 5, rhombomere bulges form. These 2 bulges express genes and, later, develop morphology characteristic of rhombomeres 1 and 2 and rhombomere 3. Posterior hindbrain specific genes, Hoxb-1, Fgf3, MafB, and the rhombomere 5 stripe of Krox-20 are never expressed in the head neuroepithelium of these embryos. From the initial formation of the neural plate, there is no evidence of rhombomere 4-7 specific characteristics. These results indicate the specification of the posterior hindbrain is lost and its cells participate in the formation of an enlarged anterior hindbrain. In our previous study, we reported the absence of the posterior hindbrain in retinoid-deprived quails (Maden, M., Gale, E., Kostetskii, I., Zile, M., 1996. Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr. Biol. 6, 417-426). Here, we show this phenotype to be the result of respecification of the hindbrain cells. This provides evidence for a region specific response to a single stimulus, retinol, which suggests a pre-rhombomeric regionalization of the hindbrain.  (+info)

Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. (43/1107)

Yeast Mre11 functions with Rad50 and Xrs2 in a complex that has pivotal roles in homologous recombination (HR) and non-homologous end-joining (NHEJ) DNA double-strand break (DSB) repair pathways. Vertebrate Mre11 is essential. Conditionally, MRE11 null chicken DT40 cells accumulate chromosome breaks and die upon Mre11 repression, showing frequent centrosome amplification. Mre11 deficiency also causes increased radiosensitivity and strongly reduced targeted integration frequencies. Mre11 is, therefore, crucial for HR and essential in mitosis through its role in chromosome maintenance by recombinational repair. Surprisingly perhaps, given the role of Mre11 in yeast NHEJ, disruption of NHEJ by deletion of KU70 greatly exacerbates the effects of MRE11 deficiency, revealing a significant Mre11-independent component of metazoan NHEJ.  (+info)

Teneurins: a novel family of neuronal cell surface proteins in vertebrates, homologous to the Drosophila pair-rule gene product Ten-m. (44/1107)

We have characterized chicken teneurin-1 and teneurin-2, two homologues of the Drosophila pair-rule gene product Ten-m and Drosophila Ten-a. The high degree of conservation between the vertebrate and invertebrate proteins suggests that these belong to a novel family. We propose to name the vertebrate members of this family teneurins, because of their predominant expression in the nervous system. The expression of teneurin-1 and -2 was investigated by in situ hybridization. We show that teneurin-1 and -2 are expressed by distinct populations of neurons during the time of axonal growth. The most prominent site of expression of chicken teneurins is the developing visual system. Recombinant teneurin-2 was expressed to assay its molecular and functional properties. We show that it is a type II transmembrane protein, which can be released from the cell surface by proteolytic cleavage at a furin site. The expression of teneurin-2 in neuronal cells led to a significant increase in the number of filopodia and to the formation of enlarged growth cones. The expression pattern of teneurins in the developing nervous system and the ability of teneurin-2 to reorganize the cellular morphology indicate that these proteins may have an important function in the formation of neuronal connections.  (+info)

Misexpression of the Emx-related homeobox genes cVax and mVax2 ventralizes the retina and perturbs the retinotectal map. (45/1107)

The mechanisms that establish the dorsal-ventral (D-V) axis of the eye are poorly understood. We isolated two homeobox genes from mouse and chicken, mVax2 and cVax, whose expression during early eye development is restricted to the ventral retina. In chick, ectopic expression of either Vax leads to ventralization of the early retina, as assayed by expression of the transcription factors Pax2 and Tbx5, and the Eph family members EphB2, EphB3, ephrinB1, and ephrinB2, all of which are normally dorsally or ventrally restricted. Moreover, the projections of dorsal but not ventral ganglion cell axons onto the optic tectum showed profound targeting errors following cVax misexpression. mVax2/cVax thus specify positional identity along the D-V axis of the retina and influence retinotectal mapping.  (+info)

Tbx5 and the retinotectum projection. (46/1107)

Dorsal and ventral aspects of the eye are distinct from the early stages of development. The developing eye cup grows dorsally, and the choroidal fissure is formed on its ventral side. Retinal axons from the dorsal and ventral retina project to the ventral and dorsal tectum, respectively. Misexpression of the Tbx5 gene induced dorsalization of the ventral side of the eye and altered projections of retinal ganglion cell axons. Thus, Tbx5 is involved in eye morphogenesis and is a topographic determinant of the visual projections between retina and tectum.  (+info)

Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. (47/1107)

Bone morphogenetic proteins (BMPs) induce autonomic neurogenesis in neural crest cultures and stimulate sympathetic neuron development when overexpressed in vivo. We demonstrate that inhibition of BMPs in the chick embryo bythe BMP antagonist Noggin prevents sympathetic neuron generation. In Noggin-treated embryos, the noradrenergic marker genes tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH), panneuronal neurofilament 160 (NF160) and SCG10 genes, and the transcriptional regulators Phox2b and Phox2a are not expressed in sympathetic ganglia. Whereas initial ganglion development is not affected, the expression of the basic helix-loop-helix transcription factor Cash-1 is strongly reduced. These results demonstrate that BMPs are essential for sympathetic neuron development and establish Cash-1 and Phox2 genes as downstream effectors of BMPs in this lineage.  (+info)

c-Abl tyrosine kinase is not essential for ataxia telangiectasia mutated functions in chromosomal maintenance. (48/1107)

c-Abl is activated by DNA damage in an ataxia telangiectasia mutated (ATM)-dependent manner and plays important roles in growth arrest and apoptosis induced by DNA damage. c-Abl also interacts physically and functionally with Rad51, a key molecule in homologous recombinational (HR) DNA repair. To study further the roles of c-Abl in HR DNA repair, we generated c-Abl(-/-) and ATM(-/-)/c-Abl(-/-) mutant cell lines from a chicken B lymphocyte DT40 cell line, comparing the phenotypes of these mutants to those of ATM(-/-) DT40 cells that we had created previously. We found that the time course of radiation-induced Rad51 focus formation is abnormal in ATM(-/-) DT40 cells, consistent with the observation that ATM(-/-) DT40 cells display hypersensitivity to ionizing radiation and highly elevated frequencies of both spontaneous and radiation-induced chromosomal aberrations. In contrast, c-Abl(-/-) cells did not show these ATM-related defects in their cellular response to radiation, nor did the disruption of c-Abl in ATM(-/-) DT40 cells exacerbate these ATM-related defects. However, c-Abl(-/-) DT40 cells, but not ATM(-/-) DT40 cells, were resistant to radiation-induced apoptosis, indicating an important role for c-Abl in this cellular response to ionizing radiation. These results therefore indicate that, although ATM plays an important role in genome maintenance, c-Abl is not essential for this ATM function. These findings suggest that c-Abl and ATM play important roles in the maintenance of the cell homeostasis in response to DNA damage that are, at least in part, independent.  (+info)