Biogenesis of multilamellar bodies via autophagy. (17/5833)

Transfection of Mv1Lu mink lung type II alveolar cells with beta1-6-N-acetylglucosaminyl transferase V is associated with the expression of large lysosomal vacuoles, which are immunofluorescently labeled for the lysosomal glycoprotein lysosomal-associated membrane protein-2 and the beta1-6-branched N-glycan-specific lectin phaseolis vulgaris leucoagglutinin. By electron microscopy, the vacuoles present the morphology of multilamellar bodies (MLBs). Treatment of the cells with the lysosomal protease inhibitor leupeptin results in the progressive transformation of the MLBs into electron-dense autophagic vacuoles and eventual disappearance of MLBs after 4 d of treatment. Heterologous structures containing both membrane lamellae and peripheral electron-dense regions appear 15 h after leupeptin addition and are indicative of ongoing lysosome-MLB fusion. Leupeptin washout is associated with the formation after 24 and 48 h of single or multiple foci of lamellae within the autophagic vacuoles, which give rise to MLBs after 72 h. Treatment with 3-methyladenine, an inhibitor of autophagic sequestration, results in the significantly reduced expression of multilamellar bodies and the accumulation of inclusion bodies resembling nascent or immature autophagic vacuoles. Scrape-loaded cytoplasmic FITC-dextran is incorporated into lysosomal-associated membrane protein-2-positive MLBs, and this process is inhibited by 3-methyladenine, demonstrating that active autophagy is involved in MLB formation. Our results indicate that selective resistance to lysosomal degradation within the autophagic vacuole results in the formation of a microenvironment propicious for the formation of membrane lamella.  (+info)

Glucose persistence on high-mannose oligosaccharides selectively inhibits the macroautophagic sequestration of N-linked glycoproteins. (18/5833)

The macroautophagic-lysosomal pathway is a bulk degradative process for cytosolic proteins and organelles including the endoplasmic reticulum (ER). We have previously shown that the human colonic carcinoma HT-29 cell population is characterized by a high rate of autophagic degradation of N-linked glycoproteins substituted with ER-type glycans. In the present work we demonstrate that glucosidase inhibitors [castanospermine (CST) and deoxynojirimycin] have a stabilizing effect on newly synthesized glucosylated N-linked glycoproteins and impaired their lysosomal delivery as shown by subcellular fractionation on Percoll gradients. The inhibition of macroautophagy was restricted to N-linked glycoproteins because macroautophagic parameters such as the rate of sequestration of cytosolic markers and the fractional volume occupied by autophagic vacuoles were not affected in CST-treated cells. The protection of glucosylated glycoproteins from autophagic sequestration was also observed in inhibitor-treated Chinese hamster ovary (CHO) cells and in Lec23 cells (a CHO mutant deficient in glucosidase I activity). The interaction of glucosylated glycoproteins with the ER chaperone binding protein (BiP) was prolonged in inhibitor-treated cells in comparison with untreated CHO cells. These results show that the removal of glucose from N-glycans of glycoproteins is a key event for their delivery to the autophagic pathway and that interaction with BiP could prevent or delay newly synthesized glucosylated N-linked glycoproteins from being sequestered by the autophagic pathway.  (+info)

Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. (19/5833)

In nutrient-rich, vegetative conditions, the yeast Saccharomyces cerevisiae transports a resident protease, aminopeptidase I (API), to the vacuole by the cytoplasm to vacuole targeting (Cvt) pathway, thus contributing to the degradative capacity of this organelle. When cells subsequently encounter starvation conditions, the machinery that recruited precursor API (prAPI) also sequesters bulk cytosol for delivery, breakdown, and recycling in the vacuole by the autophagy pathway. Each of these overlapping alternative transport pathways is specifically mobilized depending on environmental cues. The basic mechanism of cargo packaging and delivery involves the formation of a double-membrane transport vesicle around prAPI and/or bulk cytosol. Upon completion, these Cvt and autophagic vesicles are targeted to the vacuole to allow delivery of their lumenal contents. Key questions remain regarding the origin and formation of the transport vesicle. In this study, we have cloned the APG9/CVT7 gene and characterized the gene product. Apg9p/Cvt7p is the first characterized integral membrane protein required for Cvt and autophagy transport. Biochemical and morphological analyses indicate that Apg9p/Cvt7p is localized to large perivacuolar punctate structures, but does not colocalize with typical endomembrane marker proteins. Finally, we have isolated a temperature conditional allele of APG9/CVT7 and demonstrate the direct role of Apg9p/Cvt7p in the formation of the Cvt and autophagic vesicles. From these results, we propose that Apg9p/Cvt7p may serve as a marker for a specialized compartment essential for these vesicle-mediated alternative targeting pathways.  (+info)

Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. (20/5833)

Programmed cell death comprises several subtypes, as revealed by electron microscopy. Apoptosis or type I programmed cell death is characterized by condensation of cytoplasm and preservation of organelles, essentially without autophagic degradation. Autophagic cell death or type II programmed cell death exhibits extensive autophagic degradation of Golgi apparatus, polyribosomes and endoplasmatic reticulum, which precedes nuclear destruction. In the present study, we analysed the fate of cytokeratin and F-actin during autophagic cell death in the human mammary carcinoma cell line MCF-7 because recent studies suggest that an intact cytoskeleton is necessary for autophagocytosis. Programmed cell death was induced by 10(-)(6) M tamoxifen. For quantitative light microscopic analysis, autophagic vacuoles were visualized by monodansyl cadaverin, which stains autophagic vacuoles as distinct dot-like structures. In control cultures, the number of monodansylcadaverin-positive cells did not exceed 2%. Tamoxifen induced a dramatic increase 2-4 days after treatment to a maximum of 60% monodansylcadaverin-positive cells between days 5 and 7. Cell death, as indicated by nuclear condensation, increased more gradually to about 18% of all cells on day 7. In cells with pyknotic nuclei cytokeratin appeared disassembled but retained its immunoreactivity; actin was still polymerized to filaments, as demonstrated by its reaction with phalloidin. Western blot analysis showed no significant cleavage of the monomeric cytokeratin fraction. For comparison, apoptotic or type I cell death was studied using the human colon cancer cell HT29/HI1 treated with the tyrosine kinase inhibitor tyrphostin A25 as a model. Cleavage of cytokeratin was already detectable in early morphological stages of apoptosis. F-actin was found to depolymerize; its globular form could be detected by antibodies; western blot analysis revealed no products of proteolytic cleavage. In conclusion, in our model of apoptosis, early stages are associated with depolymerization of actin and degradation of intermediate filaments. In contrast, during autophagic cell death intermediate and microfilaments are redistributed, but largely preserved, even beyond the stage of nuclear collapse. The present data support the concept that autophagic cell death is a separate entity of programmed cell death that is distinctly different from apoptosis.  (+info)

Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways. (21/5833)

The cytoplasm-to-vacuole targeting (Cvt) pathway and macroautophagy are dynamic events involving the rearrangement of membrane to form a sequestering vesicle in the cytosol, which subsequently delivers its cargo to the vacuole. This process requires the concerted action of various proteins, including Apg5p. Recently, it was shown that another protein required for the import of aminopeptidase I (API) and autophagy, Apg12p, is covalently attached to Apg5p through the action of an E1-like enzyme, Apg7p. We have undertaken an analysis of Apg5p function to gain a better understanding of the role of this novel nonubiquitin conjugation reaction in these import pathways. We have generated the first temperature-sensitive mutant in the Cvt pathway, designated apg5(ts). Biochemical analysis of API import in the apg5(ts) strain confirmed that Apg5p is directly required for the import of API via the Cvt pathway. By analyzing the stage of API import that is blocked in the apg5(ts) mutant, we have determined that Apg5p is involved in the sequestration step and is required for vesicle formation and/or completion.  (+info)

Autophagy and the cvt pathway both depend on AUT9. (22/5833)

In growing cells of the yeast Saccharomyces cerevisiae, proaminopeptidase I reaches the vacuole via the selective cytoplasm-to-vacuole targeting (cvt) pathway. During nutrient limitation, autophagy is also responsible for the transport of proaminopeptidase I. These two nonclassical protein transport pathways to the vacuole are distinct in their characteristics but in large part use identical components. We expanded our initial screen for aut(-) mutants and isolated aut9-1 cells, which show a defect in both pathways, the vacuolar targeting of proaminopeptidase I and autophagy. By complementation of the sporulation defect of homocygous diploid aut9-1 mutant cells with a genomic library, in this study we identified and characterized the AUT9 gene, which is allelic with CVT7. aut9-deficient cells have no obvious defects in growth on rich media, vacuolar biogenesis, and acidification, but like other mutant cells with a defect in autophagy, they exhibit a reduced survival rate and reduced total protein turnover during starvation. Aut9p is the first putative integral membrane protein essential for autophagy. A biologically active green fluorescent protein-Aut9 fusion protein was visualized at punctate structures in the cytosol of growing cells.  (+info)

Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. (23/5833)

We have analyzed the folding state of cytosolic proteins imported in vitro into lysosomes, using an approach originally developed by Eilers and Schatz, (Eilers, M., and Schatz, G. (1986) Nature 322, 228-232) to investigate protein import into mitochondria. The susceptibility toward proteases of mouse dihydrofolate reductase (DHFR), synthesized in a coupled transcription-translation system with rabbit reticulocytes, decreased in the presence of its substrate analogue, methotrexate. This analogue complexes with high affinity with the in vitro synthesized DHFR and locks it into a protease-resistant folded conformation. DHFR was taken up by freshly isolated rat liver lysosomes and methotrexate reduced this uptake by about 80%. A chimeric DHFR protein, which carries the N-terminal presequence of subunit 9 of ATP synthase preprotein from Neurospora crassa fused to its N terminus, was taken up by lysosomes more efficiently. Again, methotrexate abolished the lysosomal uptake of the fusion protein, which was partially restored by washing of methotrexate from DHFR or by adding together methotrexate and dihydrofolate, the natural substrate of DHFR. Immunoblot analysis with anti-DHFR of liver lysosomes and of other fractions, isolated from rats starved for 88 h and treated with lysosomal inhibitors, suggests that DHFR is degraded by chaperone-mediated autophagy. Competition with ribonuclease A and stimulation by ATP/Mg(2+) and the heat shock cognate protein of 73 kDa show that the lysosomal uptake of the fusion protein also occurs by this pathway. It is concluded that the lysosomal uptake of cytosolic proteins by chaperone-mediated autophagy mainly occurs by passage of the unfolded proteins through the lysosomal membrane. Therefore, this mechanism is different from protein transport into peroxisomes, but similar to the import of proteins into the endoplasmic reticulum and mitochondria.  (+info)

Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. (24/5833)

All positive-strand RNA viruses of eukaryotes studied assemble RNA replication complexes on the surfaces of cytoplasmic membranes. Infection of mammalian cells with poliovirus and other picornaviruses results in the accumulation of dramatically rearranged and vesiculated membranes. Poliovirus-induced membranes did not cofractionate with endoplasmic reticulum (ER), lysosomes, mitochondria, or the majority of Golgi-derived or endosomal membranes in buoyant density gradients, although changes in ionic strength affected ER and virus-induced vesicles, but not other cellular organelles, similarly. When expressed in isolation, two viral proteins of the poliovirus RNA replication complex, 3A and 2C, cofractionated with ER membranes. However, in cells that expressed 2BC, a proteolytic precursor of the 2B and 2C proteins, membranes identical in buoyant density to those observed during poliovirus infection were formed. When coexpressed with 2BC, viral protein 3A was quantitatively incorporated into these fractions, and the membranes formed were ultrastructurally similar to those in poliovirus-infected cells. These data argue that poliovirus-induced vesicles derive from the ER by the action of viral proteins 2BC and 3A by a mechanism that excludes resident host proteins. The double-membraned morphology, cytosolic content, and apparent ER origin of poliovirus-induced membranes are all consistent with an autophagic origin for these membranes.  (+info)