IgG anti-endothelial cell autoantibodies from patients with systemic lupus erythematosus or systemic vasculitis stimulate the release of two endothelial cell-derived mediators, which enhance adhesion molecule expression and leukocyte adhesion in an autocrine manner. (9/1262)

OBJECTIVE: To investigate the ability of anti-endothelial cell antibodies (AECA) to modulate endothelial cell function. METHODS: The effects of purified IgG from 11 patients with systemic lupus erythematosus (SLE) and 4 patients with systemic vasculitis on the expression of adhesion molecules (intercellular adhesion molecule 1, vascular cell adhesion molecule 1, E-selectin) by human umbilical vein endothelial cells and on the adhesion of the human promyelocytic cell line U937 were examined in vitro. RESULTS: IgG from 6 of 8 AECA-positive SLE patients and 3 of 3 AECA-positive systemic vasculitis patients up-regulated adhesion molecule expression and leukocyte adhesion to endothelial cells. The 4 AECA-negative samples had no effect. Transfer experiments demonstrated that at later time points (2-8 hours) after AECA addition, endothelium-derived interleukin-1 (IL-1) accounted for the ability of AECA to increase leukocyte adhesion. However, even within very short times after addition of AECA (<30 minutes), endothelial cells released a distinct transferable mediator with similar effects. CONCLUSION: AECA in patients with SLE or systemic vasculitis may contribute to pathogenesis by increasing leukocyte adhesion to endothelial cells. AECA act by inducing the release of at least two endothelium-derived mediators, one (as-yet-unidentified) rapidly and another (IL-1) more slowly, both of which stimulate endothelial cells in an autocrine manner.  (+info)

Glucocorticoid suppresses autocrine survival of mast cells by inhibiting IL-4 production and ICAM-1 expression. (10/1262)

When mast cells are activated through their high affinity IgE receptors (FcepsilonRI), release of chemical mediators is followed by secretion of multiple cytokines. In this work, we report that IL-3-dependent mast cell line MC9 undergoes apoptosis when IL-3 is withdrawn. However, cross-linking of FcepsilonRI prevents apoptosis of MC9 by an autocrine mechanism, producing IL-3, IL-4, and GM-CSF. Although stimulated MC9 synthesizes mRNAs and proteins of these cytokines, secretion of endogenous IL-3 and GM-CSF is not enough for cell survival, whereas IL-4 itself does not have survival effect on MC9, but it induces cell aggregation by expressing LFA-1 and makes it reactive to endogenous growth factors. Addition of dexamethazone (DXM) to MC9 results in significant down-regulation of IL-4 mRNA in activated MC9. However, mRNA levels of IL-3 and GM-CSF are not changed by DXM. DXM also directly down-regulates the expression of ICAM-1 that is the high affinity ligand of LFA-1, by which the self-aggregation of MC9 is inhibited. Thus, glucocorticoids suppress autocrine survival of mast cells by inhibiting IL-4 production and ICAM-1 expression.  (+info)

alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages. (11/1262)

The hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration. Similar inhibitory effects on TNF-alpha were observed with ACTH peptides that contain the alpha-MSH amino acid sequence and act on melanocortin receptors. Nuclease protection assays indicated that expression of the human melanocortin-1 receptor subtype (hMC-1R) occurs in THP-1 cells; Southern blots of RT-PCR product revealed that additional subtypes, hMC-3R and hMC-5R, also occur. Incubation of resting macrophages with antibody to hMC-1R increased TNF-alpha concentration; the antibody also markedly reduced the inhibitory influence of alpha-MSH on TNF-alpha in macrophages treated with LPS. These results in cells known to produce alpha-MSH at rest and to increase secretion of the peptide when challenged are consistent with an endogenous regulatory circuit based on melanocortin peptides and their receptors. Targeting of this neuroimmunomodulatory circuit in inflammatory diseases in which myelomonocytic cells are prominent should be beneficial.  (+info)

Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB. (12/1262)

Although Schwann cell precursors from early embryonic nerves die in the absence of axonal signals, Schwann cells in older nerves can survive in the absence of axons in the distal stump of transected nerves. This is crucially important, because successful axonal regrowth in a damaged nerve depends on interactions with living Schwann cells in the denervated distal stump. Here we show that Schwann cells acquire the ability to survive without axons by establishing an autocrine survival loop. This mechanism is absent in precursors. We show that insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB are important components of this autocrine survival signal. The secretion of these factors by Schwann cells has significant implications for cellular communication in developing nerves, in view of their known ability to regulate survival and differentiation of other cells including neurons.  (+info)

Neuregulin stimulates myogenic differentiation in an autocrine manner. (13/1262)

During myogenesis, mononucleated myoblasts form multinucleated myotubes by membrane fusion. Efficiency of this intercellular process can be maximized by a simultaneous progress, with a time window, of other neighboring myoblasts in the differentiation program. This phenomenon has been described as the community effect. It proposes the existence of a molecule that acts as a differentiation-inducing signal to a group of identical cells. Here, we show that neuregulin is a strong candidate for this molecule in myoblast differentiation. The expression of neuregulin increased rapidly but transiently at early stage of differentiation of rat L6 cells. Neuregulin showed a potent differentiation-promoting activity in membrane fusion and expression of myosin heavy chain. The antibodies raised against neuregulin and its cognate receptor ErbB3, which were capable of neutralizing the signal pathway, inhibited myotube formation and expression of myosin heavy chain in both L6 cells and primary rat myoblasts. The progress of differentiation was mostly halted after the expression of myogenin and cell cycle arrest. These results suggest that the activation of an autocrine signaling of neuregulin may provide a basic mechanism for the community effect observed in the differentiation of the embryonic muscle cells.  (+info)

Autocrine control of vitamin D metabolism in synovial cells from arthritic patients. (14/1262)

OBJECTIVE: This study was designed to investigate whether 1, 25-dihydroxyvitamin D3 (1,25-(OH)2D3), produced by activated synovial fluid macrophages, promotes its own catabolism by upregulating vitamin D-24-hydroxylase (24-OHase) in synovial fibroblasts through a vitamin D receptor (VDR) mediated mechanism. METHODS: Synovial macrophages and fibroblasts were derived from patients with rheumatoid arthritis. Expression of VDR and 24-OHase mRNAs was determined using in situ hybridisation. Vitamin D hydroxylase activity was determined by incubating cells with [3H]-25-(OH)D3, or [3H]-1,25-(OH)2D3, and metabolite synthesis quantified using high performance liquid chromatography. RESULTS: 1, 25-(OH)2D3 increased expression of mRNA for both VDR and 24-OHase in fibroblasts by approximately threefold over 24 hours. 1,25-(OH)2D3 increased fibroblast 24-OHase activity, yielding 24-hydroxylated, and more polar, metabolites. In co-culture, fibroblasts were able to catabolise macrophage derived 1,25-(OH)2D3. CONCLUSIONS: 1, 25-(OH)2D3 is produced by macrophages in vitro at biologically relevant concentrations and can increase its own catabolism by synovial fibroblasts; this effect is probably mediated via upregulation of both synovial fibroblast VDR and 24-OHase.  (+info)

Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. (15/1262)

This study was designed to determine whether mechanical stretch activates the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway in cardiomyocytes and, if so, by what mechanism. Neonatal rat/murine cardiomyocytes were cultured on malleable silicone dishes and were stretched by 20%. Mechanical stretch induced rapid phosphorylation of JAK1, JAK2, Tyk2, STAT1, STAT3, and glycoprotein 130 as early as 2 minutes and peaked at 5 to 15 minutes. It also caused gel mobility shift of sis-inducing element, which was supershifted by preincubation with anti-STAT3 antibody. Preincubation with CV11974 (AT1 blocker) partially inhibited the phosphorylation of STAT1, but not that of STAT3. Preincubation with TAK044 (endothelin-1-type A/B-receptor blocker) did not attenuate this pathway. RX435 (anti-glycoprotein 130 blocking antibody) inhibited the phosphorylation of STAT3 and partially inhibited that of STAT1. Phosphorylation of STAT1 and STAT3 was strongly inhibited by HOE642 (Na+/H+ exchanger inhibitor) and BAPTA-AM (intracellular calcium chelator), but not by gadolinium (stretch-activated ion channel inhibitor), EGTA (extracellular Ca2+ chelator), or KN62 (Ca2+/calmodulin kinase II inhibitor). Chelerythrine (protein kinase C inhibitor) partially inhibited the phosphorylation of STAT1 and STAT3. Mechanical stretch also augmented the mRNA expression of cardiotrophin-1, interleukin-6, and leukemia inhibitory factor at 60 to 120 minutes. These results indicated that the JAK/STAT pathway was activated by mechanical stretch, and that this activation was partially dependent on autocrine/paracrine-secreted angiotensin II and was mainly dependent on the interleukin-6 family of cytokines but was independent of endothelin-1. Moreover, certain levels of intracellular Ca2+ were necessary for stretch-induced activation of this pathway, and protein kinase C was also partially involved in this activation.  (+info)

Amphiregulin acts as an autocrine growth factor in two human polarizing colon cancer lines that exhibit domain selective EGF receptor mitogenesis. (16/1262)

Colonic enterocytes, like many epithelial cells in vivo, are polarized with functionally distinct apical and basolateral membrane domains. The aims of this study were to characterize the endogenous epidermal growth factor (EGF)-like ligands expressed in two polarizing colon cancer cell lines, HCA-7 Colony 29 (HCA-7) and Caco-2, and to examine the effects of cell polarity on EGF receptor-mediated mitogenesis. HCA-7 and Caco-2 cells were grown on plastic, or as a polarized monolayer on Transwell filters. Cell proliferation was measured by 3H-thymidine incorporation and EGF receptor (EGFR) binding was assessed by Scatchard analysis. EGFR ligand expression was determined by Northern blot analysis, reverse transcription polymerase chain reaction, metabolic labelling and confocal microscopy. We found that amphiregulin (AR) was the most abundant EGFR ligand expressed in HCA-7 and Caco-2 cells. AR was localized to the basolateral surface and detected in basolateral-conditioned medium. Basolateral administration of neutralizing AR antibodies significantly reduced basal DNA replication. A single class of high-affinity EGFRs was detected in the basolateral compartment, whereas the apical compartment of polarized cells, and cells cultured on plastic, displayed two classes of receptor affinity. Basolateral administration of transforming growth factor alpha (TGF-alpha) or an EGFR neutralizing antibody also resulted in a dose-dependent stimulation or attenuation, respectively, of DNA replication. However, no mitogenic response was observed when these agents were added to the apical compartment or to confluent cells cultured on plastic. We conclude that amphiregulin acts as an autocrine growth factor in HCA-7 and Caco-2 cells, and EGFR ligand-induced proliferation is influenced by cellular polarity.  (+info)