Endogenous ATP release regulates Cl- secretion in cultured human and rat biliary epithelial cells. (17/1262)

P2Y receptor stimulation increases membrane Cl- permeability in biliary epithelial cells, but the source of extracellular nucleotides and physiological relevance of purinergic signaling to biliary secretion are unknown. Our objectives were to determine whether biliary cells release ATP under physiological conditions and whether extracellular ATP contributes to cell volume regulation and transepithelial secretion. With the use of a sensitive bioluminescence assay, constitutive ATP release was detected from human Mz-ChA-1 cholangiocarcinoma cells and polarized normal rat cholangiocyte monolayers. ATP release increased rapidly during cell swelling induced by hypotonic exposure. In Mz-ChA-1 cells, removal of extracellular ATP (apyrase) and P2 receptor blockade (suramin) reversibly inhibited whole cell Cl- current activation and prevented cell volume recovery during hypotonic stress. Moreover, exposure to apyrase induced cell swelling under isotonic conditions. In intact normal rat cholangiocyte monolayers, hypotonic perfusion activated apical Cl- currents, which were inhibited by addition of apyrase and suramin to bathing media. These findings indicate that modulation of ATP release by the cellular hydration state represents a potential signal coordinating cell volume with membrane Cl- permeability and transepithelial Cl- secretion.  (+info)

Localized expression of aromatase in human vascular tissues. (18/1262)

The atheroprotective effects of estrogen are well established and the presence of an estrogen receptor in vascular tissues has recently been reported. Therefore, we investigated the localization of the estrogen-producing enzyme aromatase in vascular tissues to assess the possible contribution of endocrine, paracrine, and autocrine modes of action. Aromatase was found in human vascular smooth muscle cells (SMCs) but not in endothelial cells on in situ hybridization. These observations were further supported by quantitative analysis of aromatase mRNA and the activity in 15 human vascular specimens. Only trace levels of expression were detected in the 3 infants examined, whereas 0.0088 to 0.0806 amol/ microg RNA of aromatase mRNA and 12.9 to 122.3 fmol. h-1. mg-1 protein of the activity were detected in 12 of the adult individuals. The switching of tissue-specific exon 1 of the human aromatase gene was also observed in some cases. Aromatase was found to be expressed only in cultured SMCs and not in cultured endothelial cells of human aorta and pulmonary artery and to be regulated through dexamethasone and the signaling pathways of protein kinase A and C. Study results revealed the localized expression of aromatase in vascular SMCs, which indicated a possible direct action of locally produced estrogen in an autocrine or paracrine manner, with possible cross talk between smooth muscle and endothelial cells.  (+info)

Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. (19/1262)

In the CNS, astrocytes are a major inducible source of interleukin-6 (IL-6). Although IL-6 has beneficial effects in the CNS because of its neurotrophic properties, its overexpression is generally detrimental, adding to the pathophysiology associated with CNS disorders. Many factors have been shown to induce IL-6 expression by astrocytes, particularly the cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta). However, the role of IL-6 in its own regulation in astrocytes has not been determined. In this study, we examined the influence of IL-6 alone or in combination with TNF-alpha or IL-1beta on IL-6 expression. IL-6 alone had no effect on IL-6 expression; however, the addition of the soluble IL-6 receptor (sIL-6R) induced IL-6 transcripts. Addition of TNF-alpha or IL-1beta plus IL-6/sIL-6R led to synergistic increases in IL-6 expression. This synergy also occurred in the absence of exogenously added IL-6, attributable to TNF-alpha- or IL-1beta-induced endogenous IL-6 protein production. IL-6 upregulation seen in the presence of TNF-alpha or IL-1beta plus IL-6/sIL-6R was transcriptional, based on nuclear run-on analysis. Experiments were extended to other IL-6 family members to determine their role in IL-6 regulation in astrocytes. Oncostatin M (OSM) induced IL-6 alone and synergized with TNF-alpha for enhanced expression. These results demonstrate that IL-6/sIL-6R and OSM play an important role in the regulation of IL-6 expression within the CNS, particularly in conjunction with the proinflammatory cytokines TNF-alpha and IL-1beta.  (+info)

Functionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation. (20/1262)

In this report, we provide evidence that NGF and BDNF have functionally antagonistic actions on sympathetic neuron growth and target innervation, with NGF acting via TrkA to promote growth and BDNF via p75NTR to inhibit growth. Specifically, in cultured sympathetic neurons that themselves synthesize BDNF, exogenous BDNF inhibits and function-blocking BDNF antibodies enhance process outgrowth. Both exogenous and autocrine BDNF mediate this effect via p75NTR because (1) BDNF does not inhibit growth of neurons lacking p75NTR, (2) function-blocking p75NTR antibodies enhance NGF-mediated growth, and (3) p75NTR-/- sympathetic neurons grow more robustly in response to NGF than do their wild-type counterparts. To determine the physiological relevance of this functional antagonism, we examined the pineal gland, a well defined sympathetic target organ. BDNF is present in the pineal gland during target innervation, and incoming sympathetic axons are p75NTR positive. Moreover, the pineal glands of BDNF+/- and BDNF-/- mice are hyperinnervated with sympathetic fibers, and tyrosine hydroxylase (TH) levels are elevated. Increased tyrosine hydroxylase is also observed in the BDNF+/- carotid artery, another sympathetic neuron target. Thus, BDNF, made by sympathetic neurons and/or their target organs, acts via p75NTR to antagonize NGF-mediated growth and target innervation, suggesting that sympathetic target innervation is determined by the balance of positively and negatively acting neurotrophins present in developing and potentially mature targets.  (+info)

Autocrine interleukin-1beta production in leukemia: evidence for the involvement of mutated RAS. (21/1262)

Interleukin (IL)-1beta is constitutively expressed in many leukemias and operates as an autocrine growth factor. To study the cellular basis for this aberrant production, we analyzed two cell lines, B1 (acute lymphoblastic leukemia) and W1 (juvenile chronic myelogenous leukemia), which express high levels of IL-1beta and have mutations in the K-RAS and N-RAS genes, respectively. Electromobility shift assays demonstrated transcription factor binding at multiple IL-1beta promoter elements [nuclear factor (NF)-IL6/CREB, NFB1, NFkappaB, and NF-IL6], consistent with the activation of an upstream signaling pathway. To determine whether activated Ras was involved, two structurally distinct classes of farnesyltransferase (FTase) inhibitors (the monoterpenes and a peptidomimetic) and an adenoviral vector expressing antisense targeted to K-RAS were used to specifically interfere with Ras function and/or expression. Treatment with the FTase inhibitors resulted in a concentration-dependent decrease in both NF-IL6/CREB binding to the IL-1beta promoter and IL-1beta protein levels, without a significant change in total cellular protein levels. Furthermore, exposure of the B1 cells to antisense against K-RAS resulted in an approximately 50% reduction in both p21Ras and IL-1beta protein levels. Growth suppression was observed after FTase inhibitor or antisense exposure, an effect that was partially reversible by the addition of recombinant IL-1beta to the cultures. Our observations suggest that mutated RAS genes may mediate autocrine IL-1beta production in some leukemias by stimulating signal transduction pathways that activate the IL-1beta promoter.  (+info)

Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. (22/1262)

The study of the underlying mechanisms by which cells respond to mechanical stimuli, i.e. the link between the mechanical stimulus and gene expression, represents a new and important area in the morphological sciences. Several cell types ('mechanocytes'), e.g. osteoblasts and fibroblasts as well as smooth, cardiac and skeletal muscle cells are activated by mechanical strain and there is now mounting evidence that this involves the cytoskeleton. Muscle offers one of the best opportunities for studying this type of mechanotransduction as the mechanical activity generated by and imposed upon muscle tissue can be accurately controlled and measured in both in vitro and in vivo systems. Muscle is highly responsive to changes in functional demands. Overload leads to hypertrophy, whilst decreased load force generation and immobilisation with the muscle in the shortened position leads to atrophy. For instance it has been shown that stretch is an important mechanical signal for the production of more actin and myosin filaments and the addition of new sarcomeres in series and in parallel. This is preceded by upregulation of transcription of the appropriate genes some of which such as the myosin isoforms markedly change the muscle phenotype. Indeed, the switch in the expression induced by mechanical activity of myosin heavy chain genes which encode different molecular motors is a means via which the tissue adapts to a given type of physical activity. As far as increase in mass is concerned, our group have cloned the cDNA of a splice variant of IGF-1 that is produced by active muscle that appears to be the factor that controls local tissue repair, maintenance and remodelling. From its sequence it can be seen that it is derived from the IGF-1 gene by alternative splicing but it has different exons to the liver isoforms. It has a 52 base insert in the E domain which alters the reading frame of the 3' end. Therefore, this splice variant of IGF-1 is likely to bind to a different binding protein which exists in the interstitial tissue spaces of muscle, neuronal tissue and bone. This would be expected to localise its action as it would be unstable in the unbound form which is important as its production would not disturb the glucose homeostasis unduly. This new growth factor has been called mechano growth factor (MGF) to distinguish it from the liver IGFs which have a systemic mode of action. Although the liver is usually thought of as the source of circulating IGF-1, it has recently been shown that during exercise skeletal muscle not only produces much of the circulating IGF-1 but active musculature also utilises most of the IGF-I produced. We have cloned both an autocrine and endocrine IGF-1, both of which are upregulated in cardiac as well as skeletal muscle when subjected to overload. It has been shown that, in contrast to normal muscle, MGF is not detectable in dystrophic mdx muscles even when subjected to stretch and stretch combined with electrical stimulation. This is true for muscular dystrophies that are due to the lack of dystrophin (X-linked) and due to a laminin deficiency (autosomal), thus indicating that the dystrophin cytoskeletal complex may be involved in the mechanotransduction mechanism. When this complex is defective the necessary systemic as well as autocrine IGF-1 growth factors required for local repair are not produced and the ensuing cell death results in progressive loss of muscle mass. The discovery of the locally produced IGF-1 appears to provide the link between the mechanical stimulus and the activation of gene expression.  (+info)

Rhinovirus-mediated changes in airway smooth muscle responsiveness: induced autocrine role of interleukin-1beta. (23/1262)

An important interplay exists between specific viral respiratory pathogens, most commonly rhinovirus (RV), and altered airway responsiveness in the development and exacerbations of asthma. Given that RV infection reportedly induces the release of various cytokines in different cell types and that the reported effects of RV on airway smooth muscle (ASM) responsiveness are highly comparable to those obtained in ASM exposed to the proinflammatory cytokine interleukin (IL)-1beta, this study examined whether RV (serotype 16)-mediated pertubations in ASM responsiveness are mechanistically coupled to altered induced expression and action of IL-1beta in RV-exposed isolated rabbit and human ASM tissue and cultured cells. Relative to control tissues, ASM inoculated with RV exhibited significantly increased maximal isometric contractility to ACh (P < 0.01) and attenuated relaxation to isoproterenol (P < 0. 005). In extended studies, we found that 1) the RV-induced changes in ASM responsiveness were ablated by pretreating the tissues with the IL-1 recombinant human receptor antagonist; 2) in contrast to their respective controls, RV-inoculated ASM tissue and cultured cells exhibited progressively induced expression of IL-1beta mRNA and elaboration of IL-1beta protein at 6 and 24 h after viral exposure; and 3) the latter effect of RV was inhibited in the presence of a monoclonal antibody to intercellular adhesion molecule-1, the endogenous receptor for most RV. Collectively, these observations provide new evidence demonstrating that "pro-asthmatic-like" pertubations in agonist responsiveness elicited in RV-exposed ASM are largely attributed to the induced autologous expression and autocrine action of IL-1beta in the virus-infected ASM.  (+info)

Autocrine IL-12 is involved in dendritic cell modulation via CD40 ligation. (24/1262)

Ligation of CD40 on dendritic cells (DC) triggers production of IL-12. Using an adoptive transfer model we have previously shown that rIL-12 acts directly on DC to enhance presentation of an otherwise poorly immunogenic tumor peptide. Using the same experimental model, we now describe a similar adjuvanticity of CD40 ligation on peptide presentation by DC. We also explore the possibility that the IL-12 resulting from CD40 ligation directly affects the APC function of DC, mediating or contributing to the adjuvant effect of CD40 ligation. CD40 engagement in vitro and rIL-12 at concentrations in the range induced by CD40 ligation were equally effective in priming DC for presentation of the tumor peptide in vivo. Remarkably, the copresence in vitro of neutralizing Ab to IL-12, but not to TNF-alpha, IL-1beta, or IFN-gamma, ablated the enhancing effect of CD40 engagement on the APC function of DC. These data suggest a major role for autocrine IL-12 in DC modulation via CD40 ligation.  (+info)