Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. (49/1165)

How sister kinetochores attach to microtubules from opposite spindle poles during mitosis (bi-orientation) remains poorly understood. In yeast, the ortholog of the Aurora B-INCENP protein kinase complex (Ipl1-Sli15) may have a role in this crucial process, because it is necessary to prevent attachment of sister kinetochores to microtubules from the same spindle pole. We investigated IPL1 function in cells that cannot replicate their chromosomes but nevertheless duplicate their spindle pole bodies (SPBs). Kinetochores detach from old SPBs and reattach to old and new SPBs with equal frequency in IPL1+ cells, but remain attached to old SPBs in ipl1 mutants. This raises the possibility that Ipl1-Sli15 facilitates bi-orientation by promoting turnover of kinetochore-SPB connections until traction of sister kinetochores toward opposite spindle poles creates tension in the surrounding chromatin.  (+info)

Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. (50/1165)

The mu 2 subunit of the AP2 complex is known to be phosphorylated in vitro by a copurifying kinase, and it has been demonstrated recently that mu 2 phosphorylation is required for transferrin endocytosis (Olusanya, O., P.D. Andrews, J.R. Swedlow, and E. Smythe. 2001. Curr. Biol. 11:896-900). However, the identity of the endogenous kinase responsible for this phosphorylation is unknown. Here we identify and characterize a novel member of the Prk/Ark family of serine/threonine kinases, adaptor-associated kinase (AAK)1. We find that AAK1 copurifies with adaptor protein (AP)2 and that it directly binds the ear domain of alpha-adaptin in vivo and in vitro. In neuronal cells, AAK1 is enriched at presynaptic terminals, whereas in nonneuronal cells it colocalizes with clathrin and AP2 in clathrin-coated pits and at the leading edge of migrating cells. AAK1 specifically phosphorylates the mu subunit in vitro, and stage-specific assays for endocytosis show that mu phosphorylation by AAK1 results in a decrease in AP2-stimulated transferrin internalization. Together, these results provide strong evidence that AAK1 is the endogenous mu 2 kinase and plays a regulatory role in clathrin-mediated endocytosis. These results also lend support to the idea that clathrin-mediated endocytosis is controlled by cycles of phosphorylation/desphosphorylation.  (+info)

C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. (51/1165)

Chromosome segregation and X-chromosome gene regulation in Caenorhabditis elegans share the component MIX-1, a mitotic protein that also represses X-linked genes during dosage compensation. MIX-1 achieves its dual roles through interactions with different protein partners. To repress gene expression, MIX-1 acts in an X-chromosome complex that resembles the mitotic condensin complex yet lacks chromosome segregation function. Here we show that MIX-1 interacts with a mitotic condensin subunit, SMC-4, to achieve chromosome segregation. The SMC-4/MIX-1 complex positively supercoils DNA in vitro and is required for mitotic chromosome structure and segregation in vivo. Thus, C. elegans has two condensin complexes, one conserved for mitosis and another specialized for gene regulation. SMC-4 and MIX-1 colocalize with centromere proteins on condensed mitotic chromosomes and are required for the restricted orientation of centromeres toward spindle poles. This cell cycle-dependent localization requires AIR-2/AuroraB kinase. Depletion of SMC-4/MIX-1 causes aberrant mitotic chromosome structure and segregation, but not dramatic decondensation at metaphase. Moreover, SMC-4/MIX-1 depletion disrupts sister chromatid segregation during meiosis II but not homologous chromosome segregation during meiosis I, although both processes require chromosome condensation. These results imply that condensin is not simply required for compaction, but plays a more complex role in chromosome architecture that is essential for mitotic and meiotic sister chromatid segregation.  (+info)

The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. (52/1165)

The separation of sister chromatids in anaphase depends on the dissociation of cohesin from chromosomes. In vertebrates, some cohesin is removed from chromosomes at the onset of anaphase by proteolytic cleavage. In contrast, the bulk of cohesin is removed from chromosomes already in prophase and prometaphase by an unknown mechanism that does not involve cohesin cleavage. We show that Polo-like kinase is required for the cleavage-independent dissociation of cohesin from chromosomes in Xenopus. Cohesin phosphorylation depends on Polo-like kinase and reduces the ability of cohesin to bind to chromatin. These results suggest that Polo-like kinase regulates the dissociation of cohesin from chromosomes early in mitosis.  (+info)

The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. (53/1165)

Accurate chromosome segregation during cell division requires not only the establishment, but also the precise, regulated release of chromosome cohesion. Chromosome dynamics during meiosis are more complicated, because homologues separate at anaphase I whereas sister chromatids remain attached until anaphase II. How the selective release of chromosome cohesion is regulated during meiosis remains unclear. We show that the aurora-B kinase AIR-2 regulates the selective release of chromosome cohesion during Caenorhabditis elegans meiosis. AIR-2 localizes to subchromosomal regions corresponding to last points of contact between homologues in metaphase I and between sister chromatids in metaphase II. Depletion of AIR-2 by RNA interference (RNAi) prevents chromosome separation at both anaphases, with concomitant prevention of meiotic cohesin REC-8 release from meiotic chromosomes. We show that AIR-2 phosphorylates REC-8 at a major amino acid in vitro. Interestingly, depletion of two PP1 phosphatases, CeGLC-7alpha and CeGLC-7beta, abolishes the restricted localization pattern of AIR-2. In Ceglc-7alpha/beta(RNAi) embryos, AIR-2 is detected on the entire bivalent. Concurrently, chromosomal REC-8 is dramatically reduced and sister chromatids are separated precociously at anaphase I in Ceglc-7alpha/beta(RNAi) embryos. We propose that AIR-2 promotes the release of chromosome cohesion via phosphorylation of REC-8 at specific chromosomal locations and that CeGLC-7alpha/beta, directly or indirectly, antagonize AIR-2 activity.  (+info)

Role of chromosomal passenger complex in chromosome segregation and cytokinesis. (54/1165)

Chromosomal passenger proteins associate with chromosomes early in mitosis and transfer to the spindle at ana/telophase. Recent results show that aurora B/AIM-1 (aurora and Ipl1-like midbody-associated protein kinase), which is responsible for mitotic histone H3 phosphorylation, INCENP (Inner Centromere protein) and Survivin/BIR are in a macromolecular complex as novel chromosomal passenger proteins. Aurora B/AIM-1 can bind to Survivin and the C-terminal region of INCENP, respectively, and colocalizes with both proteins to the centromeres, midzone and midbody. Disruption of either aurora B/AIM-1 or INCENP function leads to sever defects in chromosome segregation and cytokinesis. Moreover, the formation of the central spindle through anaphase to cytokinesis is also disrupted severely. These data suggest that chromosomal passenger complex is required for proper chromosome segregation by phosphorylating histone H3, and cytokinesis by ensuring the correct assembly of the midzone and midbody microtubule. Chromosomal passenger protein complex may couple chromosome segregation with cytokinesis.  (+info)

Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. (55/1165)

Aurora B is a protein kinase and a chromosomal passenger protein that undergoes dynamic redistribution during mitosis. We have probed the mechanism that regulates its localization with cells expressing green fluorescent protein (GFP)-tagged wild-type or mutant aurora B. Aurora B was found at centromeres at prophase and persisted until approximately 0.5 min after anaphase onset, when it redistributed to the spindle midzone and became concentrated at the equator along midzone microtubules. Depolymerization of microtubules inhibited the dissociation of aurora B from centromeres at early anaphase and caused the dispersion of aurora B from the spindle midzone at late anaphase; however, centromeric association during prometaphase was unaffected. Inhibition of CDK1 deactivation similarly caused aurora B to remain associated with centromeres during anaphase. In contrast, inhibition of the kinase activity of aurora B appeared to have no effect on its interactions with centromeres or initial relocation onto midzone microtubules. Instead, kinase-inactive aurora B caused abnormal mitosis and deactivation of the spindle checkpoint. In addition, midzone microtubule bundles became destabilized and aurora B dispersed from the equator. Our results suggest that microtubules, CDK1, and the kinase activity each play a distinct role in the dynamics and functions of aurora B in dividing cells.  (+info)

The Schizosaccharomyces pombe aurora-related kinase Ark1 interacts with the inner centromere protein Pic1 and mediates chromosome segregation and cytokinesis. (56/1165)

The chromosomal passenger proteins aurora-B, survivin, and inner centromere protein (INCENP) have been implicated in coordinating chromosome segregation with cell division. This work describes the interplay between aurora, survivin, and INCENP orthologs in the fission yeast Schizosaccharomyces pombe and defines their roles in regulating chromosome segregation and cytokinesis. We describe the cloning and characterization of the aurora-related kinase gene ark1(+), demonstrating that it is an essential gene required for sister chromatid segregation. Cells lacking Ark1p exhibit the cut phenotype, DNA fragmentation, and other defects in chromosome segregation. Overexpression of a kinase-defective version of Ark1, Ark1-K147R, inhibits cytokinesis, with cells exhibiting an elongated, multiseptate phenotype. Ark1p interacts physically and/or genetically with the survivin and INCENP orthologs Bir1p and Pic1p. We identified Pic1p in a two-hybrid screen for Ark1-K147R interacting partners and went on to map domains in both proteins that mediate their binding. Pic1p residues 925-972 are necessary and sufficient for Ark1p binding, which occurs through the kinase domain. As with Ark1-K147R, overexpression of Ark1p-binding fragments of Pic1p leads to multiseptate phenotypes. We also provide evidence that the dominant-negative effect of Ark1-K147R requires Pic1p binding, indicating that the formation of Ark1p-Pic1p complexes is required for the execution of cytokinesis.  (+info)