Morphometry of the amusic brain: a two-site study. (25/143)

Congenital amusia (or tone deafness) is a lifelong disability that prevents otherwise normal-functioning individuals from developing basic musical skills. Behavioural evidence indicates that congenital amusia is due to a severe deficit in pitch processing, but very little is known about the neural correlates of this condition. The objective of the present study was to investigate the structural neural correlates of congenital amusia. To this aim, voxel-based morphometry was used to detect brain anatomical differences in amusic individuals relative to musically intact controls, by analysing T1-weighted magnetic resonance images from two independent samples of subjects. The results were consistent across samples in highlighting a reduction in white matter concentration in the right inferior frontal gyrus of amusic individuals. This anatomical anomaly was correlated with performance on pitch-based musical tasks. The results are consistent with neuroimaging findings implicating right inferior frontal regions in musical pitch encoding and melodic pitch memory. We conceive the present results as a consequence of an impoverished communication in a right-hemisphere-based network involving the inferior frontal cortex and the right auditory cortex. Moreover, the data point to the integrity of white matter tracts in right frontal brain areas as being key in acquiring normal musical competence.  (+info)

Central auditory evaluation in multiple sclerosis: case report. (26/143)

Herein, we report a case of multiple sclerosis in which peripheral and central hearing, were evaluated through early (brainstem), middle and late auditory evoked potentials before and after corticosteroid therapy. Auditory evaluation revealed better performance on all post-treatment tests. In this case, central auditory function tests (behavioral and electrophysiological) identified the location of the impairment (brainstem), which was in agreement with the patient complaint. The speech in noise test and brainstem auditory evoked potentials are definitely appropriate in confirming brainstem lesions.  (+info)

Auditory processing assessment in children with obstructive sleep apnea syndrome. (27/143)

INTRODUCTION: The obstructive sleep apnea syndrome (OSAS) is a respiratory disorder that occurs during sleep and it is relatively common in children. AIM: The goal of this paper is to verify if there is a relationship between the obstructive sleep apnea syndrome (OSAS) and auditory processing. METHODS: In order to do that, three groups of children ranging in age from 5 to 11 were studied, including a normal group. Twenty subjects who made up the study group were submitted to ear, nose and throat (ENT) exams and to polysomnography (PSG), and were divided in two groups: GROUP I (RO) comprised of 10 children who presented oral breathing and displayed normal PSG, and GROUP II (SAS) comprised of 10 children who presented oral breathing and displayed abnormal PSG. Their performance was compared to the performance of the third group--GROUP III (REN) comprised of 10 children who did not refer ENT difficulties. All the subjects completed a basic audiometric assessment as well as an auditory processing diagnosis. RESULTS: The analyses of the results revealed a statistically significant difference in ENT exams related to the turbinate and the palatine tonsils. Group II presented a higher incidence of turbinate hypertrophy levels II and III (p<0.001) and palatine tonsils hypertrophy grades III and IV (p 0.007). Regarding the auditory processing assessment, a statistically significant difference (p<0.001) was obtained in the dichotic digits test. Group II performed worse than group III. Also, for the non-verbal sequence memory test, Group II obtained a worse result (p<0.022) than Group I. CONCLUSION: Subjects with OSAS obtained worse results in auditory processing tests.  (+info)

Auditory processing in patients with temporal lobe epilepsy. (28/143)

Temporal epilepsy, one of the most common presentation of this pathology, causes excessive electrical discharges in the area where we have the final station of the auditory pathway. Both the anatomical and functional integrity of the auditory pathway structures are essential for the correct processing of auditory stimuli. AIM: to check the Auditory Processing in patients with temporal lobe epilepsy regarding the auditory mechanisms of discrimination from sequential sounds and tone patterns, discrimination of the sound source direction and selective attention to verbal and nonverbal sounds. METHOD: eight individuals with temporal lobe epilepsy were assessed, after excluding those with non-confirmed diagnosis or with the focus of discharges not limited to this lobe. The evaluation was carried out through special auditory tests: Sound Localization Test, Duration Pattern Test, Digits Dichotic Test and Non-Verbal Dichotic Test. Their performances were compared to the performances of individuals without neurological diseases (case-control study). RESULTS: similar performances were observed between patients with temporal lobe epilepsy and the control group regarding the auditory mechanism of sound source direction discrimination. Comparing the other auditory mechanisms assessed, the patients with temporal lobe epilepsy presented worse results. CONCLUSION: individuals with temporal lobe epilepsy had more deficits in auditory processing than those without cortical damage.  (+info)

Developmental disruptions and behavioral impairments in rats following in utero RNAi of Dyx1c1. (29/143)

Developmental malformations of cortex have been shown to co-occur with language, learning, and other cognitive deficits in humans. Rodent models have repeatedly shown that animals with such developmental malformations have deficits related to auditory processing and learning. More specifically, freeze-lesion induced microgyria as well as molecular layer ectopias have been found to impair rapid auditory processing ability in rats and mice. In humans, deficits in rapid auditory processing appear to relate to later impairments of language. Recently, genetic variants of four different genes involved in early brain development have been proposed to associate with an elevated incidence of developmental dyslexia in humans. Three of these, DYX1C1, DCDC2, and KIAA0319, have been shown by in utero RNAi to play a role in neuronal migration in developing neocortex. The present study assessed the effects of in utero RNAi of Dyx1c1 on auditory processing and spatial learning in rats. Results indicate that RNAi of Dyx1c1 is associated with cortical heterotopia and is suggestive of an overall processing deficit of complex auditory stimuli in both juvenile and adult periods (p=.051, one-tail). In contrast, adult data alone reveal a significant processing impairment among RNAi treated subjects compared to shams, indicating an inability for RNAi treated subjects to improve detection of complex auditory stimuli over time (p=.022, one-tail). Further, a subset of RNAi treated rats exhibited hippocampal heterotopia centered in CA1 (in addition to cortical malformations). Malformations of hippocampus were associated with robust spatial learning impairment in this sub-group (p<.01, two-tail). In conclusion, in utero RNAi of Dyx1c1 results in heterogeneous malformations that correspond to distinct behavioral impairments in auditory processing, and spatial learning.  (+info)

Infant information processing and family history of specific language impairment: converging evidence for RAP deficits from two paradigms. (30/143)

An infant's ability to process auditory signals presented in rapid succession (i.e. rapid auditory processing abilities [RAP]) has been shown to predict differences in language outcomes in toddlers and preschool children. Early deficits in RAP abilities may serve as a behavioral marker for language-based learning disabilities. The purpose of this study is to determine if performance on infant information processing measures designed to tap RAP and global processing skills differ as a function of family history of specific language impairment (SLI) and/or the particular demand characteristics of the paradigm used. Seventeen 6- to 9-month-old infants from families with a history of specific language impairment (FH+) and 29 control infants (FH-) participated in this study. Infants' performance on two different RAP paradigms (head-turn procedure [HT] and auditory-visual habituation/recognition memory [AVH/RM]) and on a global processing task (visual habituation/recognition memory [VH/RM]) was assessed at 6 and 9 months. Toddler language and cognitive skills were evaluated at 12 and 16 months. A number of significant group differences were seen: FH+ infants showed significantly poorer discrimination of fast rate stimuli on both RAP tasks, took longer to habituate on both habituation/recognition memory measures, and had lower novelty preference scores on the visual habituation/recognition memory task. Infants' performance on the two RAP measures provided independent but converging contributions to outcome. Thus, different mechanisms appear to underlie performance on operantly conditioned tasks as compared to habituation/recognition memory paradigms. Further, infant RAP processing abilities predicted to 12- and 16-month language scores above and beyond family history of SLI. The results of this study provide additional support for the validity of infant RAP abilities as a behavioral marker for later language outcome. Finally, this is the first study to use a battery of infant tasks to demonstrate multi-modal processing deficits in infants at risk for SLI.  (+info)

Age-related differences in neuromagnetic brain activity underlying concurrent sound perception. (31/143)

Deficits in parsing concurrent auditory events are believed to contribute to older adults' difficulties in understanding speech in adverse listening conditions (e.g., cocktail party). To explore the level at which aging impairs sound segregation, we measured auditory evoked fields (AEFs) using magnetoencephalography while young, middle-aged, and older adults were presented with complex sounds that either had all of their harmonics in tune or had the third harmonic mistuned by 4 or 16% of its original value. During the recording, participants were asked to ignore the stimuli and watch a muted subtitled movie of their choice. For each participant, the AEFs were modeled with a pair of dipoles in the superior temporal plane, and the effects of age and mistuning were examined on the amplitude and latency of the resulting source waveforms. Mistuned stimuli generated an early positivity (60-100 ms), an object-related negativity (ORN) (140-180 ms) that overlapped the N1 and P2 waves, and a positive displacement that peaked at approximately 230 ms (P230) after sound onset. The early mistuning-related enhancement was similar in all three age groups, whereas the subsequent modulations (ORN and P230) were reduced in older adults. These age differences in auditory cortical activity were associated with a reduced likelihood of hearing two sounds as a function of mistuning. The results reveal that inharmonicity is rapidly and automatically registered in all three age groups but that the perception of concurrent sounds declines with age.  (+info)

The neural code of auditory phantom perception. (32/143)

Tinnitus is defined by an auditory perception in the absence of an external source of sound. This condition provides the distinctive possibility of extracting neural coding of perceptual representation. Previously, we had established that tinnitus is characterized by enhanced magnetic slow-wave activity (approximately 4 Hz) in perisylvian or putatively auditory regions. Because of works linking high-frequency oscillations to conscious sensory perception and positive symptoms in a variety of disorders, we examined gamma band activity during brief periods of marked enhancement of slow-wave activity. These periods were extracted from 5 min of resting spontaneous magnetoencephalography activity in 26 tinnitus and 21 control subjects. Results revealed the following, particularly within a frequency range of 50-60 Hz: (1) Both groups showed significant increases in gamma band activity after onset of slow waves. (2) Gamma is more prominent in tinnitus subjects than in controls. (3) Activity at approximately 55 Hz determines the laterality of the tinnitus perception. Based on present and previous results, we have concluded that cochlear damage, or similar types of deafferentation from peripheral input, triggers reorganization in the central auditory system. This produces permanent alterations in the ongoing oscillatory dynamics at the higher layers of the auditory hierarchical stream. The change results in enhanced slow-wave activity reflecting altered corticothalamic and corticolimbic interplay. Such enhancement facilitates and sustains gamma activity as a neural code of phantom perception, in this case auditory.  (+info)