The effect of the glyphosate, 2,4-D, atrazine e nicosulfuron herbicides upon the Edaphic collembola (Arthropoda: Ellipura) in a no tillage system. (73/193)

The use of herbicides is a common and intensive practice in no tillage systems. The herbicides can influence, directly or indirectly, the population of edaphic arthropods. Collembola is a group that functions as a bio-indicator of soil conditions. The degree of abundance and diversity of Collembola provides the level of soil disturbance provoked by agricultural practices. This experiment was designed to compare the influence of herbicides on the population fluctuation of Collembola in a no-till soil preparation system. The work was conducted in a non irrigated no-till area at the Nucleo Experimental de Ciencias Agrarias of the Universidade Federal de Mato Grosso do Sul (UFMS), Campus de Dourados, in soil planted with corn as a surface covering, during the period of December, 2002 to December, 2003. The data were analyzed according to a completely randomized model, in a split plot design. The plots received four types of herbicides: glyphosate, atrazine, 2,4-D and nicosulfuron. A fifth plot did not receive any herbicide (control), for a total of five treatment types. The sub plots were represented by their collection times (10, 20, 30 and 40 days after the herbicide applications). Both the type of herbicide and the time of data sampling influenced the Collembola population fluctuaction. The treatments with atrazine and 2,4-D caused the most reduction of the population of Collembola, depending on the time of application.  (+info)

Hydroxyatrazine N-ethylaminohydrolase (AtzB): an amidohydrolase superfamily enzyme catalyzing deamination and dechlorination. (74/193)

Hydroxyatrazine [2-(N-ethylamino)-4-hydroxy-6-(N-isopropylamino)-1,3,5-triazine] N-ethylaminohydrolase (AtzB) is the sole enzyme known to catalyze the hydrolytic conversion of hydroxyatrazine to N-isopropylammelide. AtzB, therefore, serves as the point of intersection of multiple s-triazine biodegradative pathways and is completely essential for microbial growth on s-triazine herbicides. Here, atzB was cloned from Pseudomonas sp. strain ADP and its product was purified to homogeneity and characterized. AtzB was found to be dimeric, with subunit and holoenzyme molecular masses of 52 kDa and 105 kDa, respectively. The k(cat) and K(m) of AtzB with hydroxyatrazine as a substrate were 3 s(-1) and 20 microM, respectively. Purified AtzB had a 1:1 zinc-to-subunit stoichiometry. Sequence analysis revealed that AtzB contained the conserved mononuclear amidohydrolase superfamily active-site residues His74, His76, His245, Glu248, His280, and Asp331. An intensive in vitro investigation into the substrate specificity of AtzB revealed that 20 of the 51 compounds tested were substrates for AtzB; this allowed for the identification of specific substrate structural features required for catalysis. Substrates required a monohydroxylated s-triazine ring with a minimum of one primary or secondary amine substituent and either a chloride or amine leaving group. AtzB catalyzed both deamination and dechlorination reactions with rates within a range of one order of magnitude. This differs from AtzA and TrzN, which do not catalyze deamination reactions, and AtzC, which is not known to catalyze dechlorination reactions.  (+info)

In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells. (75/193)

Recent data suggest that some of the immunotoxic effects of the herbicide atrazine, a very widely used pesticide, may be due to perturbations in dendritic cell (DC) function. As consequences of atrazine exposure on the phenotypic and functional maturation of DC have not been studied, our objective was, using the murine DC line, JAWSII, to determine whether atrazine will interfere with DC maturation. First, we characterized the maturation of JAWSII cells in vitro by inducing them to mature in the presence of growth factors and selected maturational stimuli in vitro. Next, we exposed the DC cell line to a concentration range of atrazine and examined its effects on phenotypic and functional maturation of DC. Atrazine exposure interfered with the phenotypic and functional maturation of DC at non-cytotoxic concentrations. Among the phenotypic changes caused by atrazine exposure was a dose-dependent removal of surface MHC-I with a significant decrease being observed at 1 microM concentration. In addition, atrazine exposure decreased the expression of the costimulatory molecule CD86 and it downregulated the expression of the CD11b and CD11c accessory molecules and the myeloid developmental marker CD14. When, for comparative purposes, we exposed primary thymic DC to atrazine, MHC-I and CD11c expression was also decreased. Phenotypic changes in JAWSII DC maturation were associated with functional inhibition of maturation as, albeit at higher concentrations, receptor-mediated antigen uptake was increased by atrazine. Thus, our data suggest that atrazine directly targets DC maturation and that toxicants such as atrazine that efficiently remove MHC-I molecules from the DC surface are likely to contribute to immune evasion.  (+info)

Assessing exposure to atrazine and its metabolites using biomonitoring. (76/193)

BACKGROUND: Atrazine (ATZ) is the second most abundantly applied pesticide in the United States. When we assessed exposure to ATZ by measuring its urinary mercapturic acid metabolite, general population data indicated that < 5% of the population was exposed to ATZ-related chemicals (limit of detection < 0.8 ng/mL). OBJECTIVES: The aim of our study was to determine if we were underestimating ATZ exposure by measuring its urinary mercapturic acid metabolite and if the urinary metabole profile changed with the exposure scenario. METHODS: We conducted a small-scale study involving 24 persons classified as high- (n = 8), low(n = 5), and environmental- (n = 11) exposed to ATZ. Using online solid phase extraction high performance liquid chromatography-tandem mass spectrometry, we measured nine ATZ-related metabolites in urine that included dealkylated, hydroxylated, and mercapturic acid metabolites. RESULTS: We found that the urinary metabolite profiles varied greatly among exposure scenarios and among persons within each exposure scenario. Although diaminochlorotriazine (DACT) appeared to be the predominant urinary metabolite detected in each exposure category, the variation in proportion of total ATZ metabolites among persons was consistently large, suggesting that one metabolite alone could not be measured as a surrogate for ATZ exposure. CONCLUSIONS: We have likely been underestimating population-based exposures by measuring only one urinary ATZ metabolite. Multiple urinary metabolites must be measured to accurately classify exposure to ATZ and its environmental degradates. Regardless, DACT and desethylatrazine appear to be the most important metabolites to measure to evaluate exposures to ATZ-related chemicals.  (+info)

Gestational exposure to atrazine: effects on the postnatal development of male offspring. (77/193)

Atrazine is an herbicide used worldwide to control grasses and weeds. Previous studies have shown that, depending on atrazine's administered dose, exposure of male rats during the early postnatal or peripubertal periods can result in alterations in endocrine function. The gestational period is particularly vulnerable to environmental agents; however, the possible effects of atrazine exposure during this period have received only limited attention. Herein we examine the dose effects of atrazine exposure during Sprague-Dawley rat gestation on the postnatal development of male offspring. Pregnant dams were treated by oral gavage with atrazine at 0 to 100 mg/kg/d from gestational day 14 to parturition. Thereafter, neither the pups nor the dams received atrazine. Atrazine had no effect on the number of live births per dam. Neonatal pup survival was affected, however, with increased pup death seen at doses of 10 mg/kg/d and higher. There was no effect of atrazine on the testosterone concentration within the testes of newborn pups. Anogenital distance, an androgen-dependent process, decreased from the control level at the 75 and 100 mg/kg/d doses, with the decrease reaching significance at 100 mg/kg/d. Preputial separation, also an androgen-dependent process, was delayed significantly compared with that in controls in response to the 50 and 100 mg/kg/d doses. At postnatal day 60, serum testosterone concentrations were reduced significantly from controls in the 50 to 100 mg/kg/d groups. However, these decreases had little effect on seminal vesicle or ventral prostate weights. These results, taken together, are suggestive of antiandrogenic effects of gestational atrazine exposure on male offspring, although for most parameters, the doses used in this study are unlikely to be experienced under any but experimental conditions.  (+info)

Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. (78/193)

Bacteriophages are very abundant in the biosphere, and viral infection is believed to affect the activity and genetic diversity of bacterial communities in aquatic environments. Lysogenic conversion, for example, can improve host fitness and lead to phage-mediated horizontal gene transfer. However, little is known about lysogeny and transduction in the soil environment. In this study we employed atrazine-impregnated Bio-Sep beads (a cell immobilization matrix) to sample active microbiota from soils with prior pesticide exposure history. Once recovered from soil, the bead communities were induced with mitomycin C (MC), and viral and bacterial abundances were determined to evaluate the incidence of inducible prophage in soil bacteria. The inducible fraction calculated within bead communities was high (ca. 85%) relative to other studies in aquatic and sedimentary environments. Moreover, the bacterial genes encoding 16S rRNA and trzN, a chlorohydrolase gene responsible for dehalogenation of atrazine, were detected by PCR in the viral DNA fraction purified from MC-induced bead communities. A diverse collection of actinobacterial 16S rRNA gene sequences occurred within the viral DNA fraction of induced, water-equilibrated beads. Similar results were observed in induced atrazine-equilibrated beads, where 77% of the cloned sequences were derived from actinobacterial lineages. Heterogeneous 16S rRNA gene sequences consisting of fragments from two different taxa were detected in the clone libraries. The results suggest that lysogeny is a prevalent reproductive strategy among soil bacteriophages and that the potential for horizontal gene transfer via transduction is significant in soil microbial communities.  (+info)

Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-induced tolerance. (79/193)

BACKGROUND: Soluble sugars, which play a central role in plant structure and metabolism, are also involved in the responses to a number of stresses, and act as metabolite signalling molecules that activate specific or hormone-crosstalk transduction pathways. The different roles of exogenous sucrose in the tolerance of Arabidopsis thaliana plantlets to the herbicide atrazine and oxidative stress were studied by a transcriptomic approach using CATMA arrays. RESULTS: Parallel situations of xenobiotic stress and sucrose-induced tolerance in the presence of atrazine, of sucrose, and of sucrose plus atrazine were compared. These approaches revealed that atrazine affected gene expression and therefore seedling physiology at a much larger scale than previously described, with potential impairment of protein translation and of reactive-oxygen-species (ROS) defence mechanisms. Correlatively, sucrose-induced protection against atrazine injury was associated with important modifications of gene expression related to ROS defence mechanisms and repair mechanisms. These protection-related changes of gene expression did not result only from the effects of sucrose itself, but from combined effects of sucrose and atrazine, thus strongly suggesting important interactions of sucrose and xenobiotic signalling or of sucrose and ROS signalling. CONCLUSION: These interactions resulted in characteristic differential expression of gene families such as ascorbate peroxidases, glutathione-S-transferases and cytochrome P450s, and in the early induction of an original set of transcription factors. These genes used as molecular markers will eventually be of great importance in the context of xenobiotic tolerance and phytoremediation.  (+info)

Perturbation of organogenesis by the herbicide atrazine in the amphibian Xenopus laevis. (80/193)

 (+info)