Location of an oligomycin-insensitive and magnesium ion-stimulated adenosine triphosphatase in rat spleen mitochondria. (41/184)

1. When rat spleen mitochondria are incubated with oxidizable substrates, added MgCl2 (greater than 150 muM free concentration) markedly stimulates state-4 respiration and lowers both the respiratory control and ADP/O ratios; this effect is reversible on addition of excess of EDTA. 2. With [gamma-32P]ATP as substrate, an Mg2+-stimulated ATPase (adenosine triphosphate) was identified in the atractyloside-insensitive and EDTA-accessible space of intact rat spleen mitochondria. 3. Oligomycin has no effect on the activity of the Mg2+-stimulated ATPase at a concentration (2.0mug/mg of protein) that completely inhibits the atractyloside-sensitive reaction. Of the two ATPase activities, only the atracytoloside sensitive reaction is stimulated (approx. 40%) by dinitrophenol. 4. On digitonin fractionation the atractyloside-insensitive Mg2+-stimulated ATPase co-purifies with the outer membrane-fraction of rat spleen mitochondria, whereas (as expected) the atractylosidesensitive activity co-purifies with the inner-membrane plus matrix fraction. 5. Stoicheiometric amounts of ADP and Pi are produced as the end products of ATP hydrolysis by purified outer-membrane fragments; no significant AMP production is detected during the time-course of the reaction. 6. The outer-membrane ATPase is present in rat kidney cortex and heart mitochondria as well as in spleen, but is absent from rat liver, thymus, brain, lung, diaphragm and skeletal muscle.  (+info)

Rickettsial permeability. An ADP-ATP transport system. (42/184)

The obligate intracellular parasitic bacterium, Rickettsia prowazeki, has a carrier-mediated transport system for ADP and ATP. The transport of nucleotides was measured by membrane filtration assays; the assay was shown not to harm the relatively labile rickettsiae. The nucleotide transport system was shown to reside in the rickettsiae, not in the contaminating yolk sac mitochondria of the preparation. The influx of nucleotide had an activation energy of 12 to 13 kcal above 22 deg-rees (an apparent transition temperature), and 30 kcal below this value. The uptake of nucleotide was independent of the Mg2+ concentration, but was markedly stimulated by the phosphate concentration. The pH optimum of the influx of nucleotide was pH 7. The specificity of the transport system was remarkable in that it required a specific moiety in each portion of the nucleotide, i.e. an adenine base, a ribose sugar, and two or three, but not one, phosphates. Of the wide variety of compounds tested, the system could transport only ADP, ATP, and (beta, gamma-methylene) adenosine 5'-triphosphate. The influx of nucleotide was a saturable process; half-maximum velocity was achieved at a nucleotide concentration of about 75 muM. ADP and ATP were competitive inhibitors of each other's transport. Although at least 95% of the labeled intracellular nucleotide was exchangeable, efflux of labeled nucleotide was observed only in the presence of unlabeled nucleotide in the medium. Half-maximum efflux was achieved at a concentration of about 75 muM. A large intracellular to extracellular concentration gradient of labeled nucleotide was maintained in the presence of metabolic inhibitors and uncouplers, which completely abolished rickettsial hemolysis. While having no effect on the steady state, KCN and DNP accelerated both influx and efflux. Measurements of the endogenous pool of adenine nucleotides in isolated rickettsiae show that is was large (5 mM), and that these unlabeled nucleotides exchanged, on approximately a 1/1 basis, with exogenously added nucleotide. These studies support the proposal that rickettsiae are not "leaky" to adenine nucleotides or to small molecules in general, and that they have a carrier-mediated transport system which allows an exchange of host and parasite ADP and ATP.  (+info)

Adenine nucleotide translocase greatly increases the partition of trinitrophenyl-ATP into reduced Triton X-100 micelles. (43/184)

The presence of adenine nucleotide translocase (ANT) was found to greatly enhance the partitioning of the ATP analog 2',3'-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP) into reduced Triton X-100 micelles. The protein's effect was studied through the quenching of fluorescence of purified ANT, irreversibly inhibited by carboxyatractyloside (CAT), solubilized in reduced Triton X-100 micelles. The dependence of quenching of the protein's time-resolved tryptophan fluorescence on TNP-ATP concentration was measured and found to follow a Stern-Volmer mechanism. However, the calculated quenching constant was too large to be accounted for by the aqueous TNP-ATP concentration. Experiments were therefore conducted to determine the partitioning of the quencher between the three phases present: aqueous, protein-free micelle, and protein micelle; a system also described by the equation of Omann, G. M., and M. Glaser (1985. Biophys. J. 47:623-627.). By measuring the dependence of the apparent quenching rate constant on the protein concentration and protein/micelle ratios, this equation was used to calculate both the quencher partition coefficient into protein-free micelles (Pm) and into protein-micelles (Ppm), as well as the bimolecular quenching rate constant (kpm) in protein micelles. From the quenching experiments, kpm = 5.0 x 10(8)M-1s-1,Pm = 290 and pyrene quenching experiment to be 325, and by a rapid filtration experiment to be 450. Clearly, the presence of the integral membrane protein ANT-CAT in reduced Triton X-100 micelles greatly increases the partition of TNP-ATP into the micelle. ANT alters the properties and thus, the structure of the detergent micelle, which has direct implications for the use of detergent micelles as a model system for membrane proteins and may indicate that analogous effects occur in the mitochondrial membrane.  (+info)

Altered chromatographic behaviour of mitochondrial ADP/ATP translocase induced by stabilization of the protein by binding of 6'-O-fluorescein-atractyloside. (44/184)

Atractyloside (ATR) is a high-affinity specific inhibitor of the mitochondrial ADP/ATP translocase (AAT). The binding of a fluorescent derivative, 6'- O -fluorescein-ATR (FATR), to mitochondria has been characterized. The binding constants obtained are in agreement with previously published values for ATR, demonstrating that FATR is a suitable probe of the AAT. AAT inhibited by FATR (FATR-AAT) was solubilized in dodecyl maltoside and purified by two separate ion-exchange chromatography steps at different pHs, which allowed FATR-AAT to be purified to homogeneity. The presence of the bound fluorescent probe enabled the inhibited AAT to be distinguished from the unliganded protein during chromatography, as they were markedly different in their chromatographic behaviour. The purified FATR-AAT was dimeric and in a single major conformation containing 1 mole FATR per mole of AAT dimer. In contrast, uninhibited AAT was monomeric and conformationally unstable. Use of the fluorescent ATR derivative in the development of the protocol enabled the stable dimeric AAT to be monitored directly and purified more effectively. The purification protocol was repeated using non-derivatized ATR, and highly pure AAT was obtained that was devoid of other members of the mitochondrial carrier family.  (+info)

Abnormal mitochondrial respiration in skeletal muscle in patients with peripheral arterial disease. (45/184)

OBJECTIVE: Discrete morphologic, enzymatic and functional changes in skeletal muscle mitochondria have been demonstrated in patients with peripheral arterial disease (PAD). We examined mitochondrial respiration in the gastrocnemius muscle of nine patients (10 legs) with advanced PAD and in nine control patients (nine legs) without evidence of PAD. METHODS: Mitochondrial respiratory rates were determined with a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles. Muscle samples were obtained from the anteromedial aspect of the gastrocnemius muscle, at a level 10 cm distal to the tibial tuberosity. Mitochondria respiratory rate, calculated as nanoatoms of oxygen consumed per minute per milligram of noncollagen protein, were measured at baseline (V(0)), after addition of substrates (malate and glutamate; (V(SUB)), after addition of adenosine diphosphate (ADP) (V(ADP)), and finally, after adenine nucleotide translocase inhibition with atractyloside (V(AT)). The acceptor control ratio, a sensitive indicator of overall mitochondrial function, was calculated as the ratio of the respiratory rate after the addition of ADP to the respiratory rate after adenine nucleotide translocase inhibition with atractyloside (V(ADP)/ V(AT)). RESULTS: Respiratory rate in muscle mitochondria from patients with PAD were not significantly different from control values at baseline (0.31 +/- 0.06 vs 0.55 +/- 0.12; P =.09), but V(sub) was significantly lower in patients with PAD compared with control subjects (0.43 +/- 0.07 vs 0.89 +/- 0.20; P <.05), as was V(ADP) (0.69 +/- 0.13 vs 1.24 +/- 0.20; P <.05). Respiratory rates after atractyloside inhibition in patients with PAD were no different from those in control patients (0.47 +/- 0.07 vs 0.45 +/- P =.08). Compared with control values, mitochondria from patients with PAD had a significantly lower acceptor control ratio (1.41 +/- 0.10 vs 2.90 +/- 0.20; P <.001). CONCLUSION: Mitochondrial respiratory activity is abnormal in lower extremity skeletal muscle in patients with PAD. When considered in concert with the ultrastructural and enzymatic abnormalities previously documented in mitochondria of chronically ischemic muscle, these data support the concept of defective mitochondrial function as a pathophysiologic component of PAD.  (+info)

FAD transport and FAD-dependent protein thiol oxidation in rat liver microsomes. (46/184)

The transport of FAD and its effect on disulfide bond formation was investigated in rat liver microsomal vesicles. By measuring the intravesicular FAD-accessible space, we observed that FAD permeates across the microsomal membrane and accumulates in the lumen. Rapid filtration experiments also demonstrated the uptake and efflux of the compound, which could be inhibited by atractyloside and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. FAD entering the lumen promoted the oxidation of protein thiols and increased the intraluminal oxidation of glucose-6-phosphate. These findings support the notion that, similar to yeast, free FAD may have a decisive role in the mechanism of oxidative protein folding in the endoplasmic reticulum lumen of mammalian cells.  (+info)

Mobilization of adenine nucleotide translocators as molecular bases of the biochemical threshold effect observed in mitochondrial diseases. (47/184)

The existence of a biochemical threshold effect in the metabolic expression of oxidative phosphorylation deficiencies has considerable implications for the understanding of mitochondrial bioenergetics and the study of mitochondrial diseases. However, the molecular bases of this phenomenon remain unclear. We report here a new mechanism to explain this threshold effect, based on a reserve of enzymes not initially participating in the respiratory rate that can be activated either to respond to a flux increase or to compensate for a defect induced by a mutation. We show that this mobilization occurs through 1) the assembly of inactive adenine nucleotide translocator isoform 1 subunits into oligomeric active carriers or 2) conformational changes in the adenine nucleotide translocator isoform 1 in a permeability transition pore-like structure. We discuss how these transitions are sensitive to the steady state of oxidative phosphorylation functioning or tissue and analyze their consequences on the threshold effect.  (+info)

Mitochondrial permeability transition induced by reactive oxygen species is independent of cholesterol-regulated membrane fluidity. (48/184)

Cholesterol enrichment of rat liver mitochondria (CHM) impairs atractyloside-induced mitochondrial permeability transition (MPT) due to decreased membrane fluidity. In this study we addressed the effect of cholesterol enrichment on MPT induced by reactive oxygen species (ROS). Superoxide anion generated by xanthine plus xanthine oxidase triggered mitochondrial swelling and cytochrome c release in CHM, which was prevented by butylated hydroxytoluene, an anti-voltage-dependent anion channel antibody, or cyclosporin A. Furthermore, hydrogen peroxide generated by the combination of ganglioside GD3 and mitochondrial GSH depletion elicited mitochondrial swelling and release of cytochrome c, Smac/Diablo and apoptosis-inducing factor in control mitochondria and CHM. Thus, ROS induce MPT and apoptosome activation regardless of decreased mitochondrial membrane dynamics due to cholesterol enrichment.  (+info)