Thirteen-week subchronic rat inhalation toxicity study with a recovery phase of trivalent chromium compounds, chromic oxide, and basic chromium sulfate. (9/168)

The toxicity of trivalent chromium compounds; chromic oxide and basic chromium sulfate, was investigated in rats in a 13-week nose-only inhalation study that included a 13-week recovery period. Nose-only exposures to insoluble chromic oxide dust at 4.4, 15, or 44 mg/m3 or soluble basic chromium sulfate dust at 17, 54, or 168 mg/m3 (trivalent chromium equivalent concentrations of 3, 10, and 30 mg/m3) were carried out for 6 h/day, 5 days/week. No compound-related mortality occurred. General toxic effects, only observed with high-exposure levels of basic chromium sulfate, included sporadic signs of labored breathing and depressed body weights. No apparent compound-related effects were noted for sperm motility or morphology, for any concentration of either test material. Bronchoalveolar lavage fluid evaluations showed test material in mononuclear cells with chromic oxide and increased neutrophils, protein, lactic dehydrogenase and cellular debris with basic chromium sulfate. The principle effects for both materials were primarily to the respiratory tract. Chromic oxide caused pathological changes in the bronchial and mediastinal lymphatic tissue and lungs, consisting of the presence of pigment-laden macrophages, lymphoid and septal hyperplasia, and interstitial inflammation similar to that observed with other inert dusts. Basic chromium sulfate produced more severe and widespread effects in the nasal cavity, larynx, lungs, and mediastinal lymph node. Effects were characterized by accumulation of foreign material, infiltration of alveolar macrophages, septal cell hyperplasia, and granulomatous and chronic inflammation. Pigment was still present in chromic oxide and, to a lesser extent, in basic chromium sulfate-treated animals after the 13-week recovery period, with partial recovery of the pathological lesions. A NOAEL was not established for either test material, but 4.4 mg/m3 was thought to be near the NOAEL level for subchronic exposure to chromic oxide. The results of this study indicate significant differences in toxicity to the respiratory tract between trivalent chromium compounds chromic oxide and basic chromium sulfate. These are likely related to differences in acidity and water solubility, rather than chromium concentration per se. This conclusion is substantiated by the lack of effect on other internal organs.  (+info)

Lack of whole-body pharmacokinetic differences of halothane enantiomers in the rat. (10/168)

BACKGROUND: Halothane is made and used as a racemate (an equimolar mixture of R- and S- enantiomers). This study was initiated to determine whether there were demonstrable enantiomeric differences in the whole-body pharmacokinetics of halothane that might have significance for studies in which racemate is used. METHODS: Adult male Wistar rats were exposed to halothane vaporized in the atmosphere of a closed constant volume chamber supplied with O2 commensurate with CO2 production. Concentrations of halothane enantiomers were measured by a specific gas chromatography-mass spectrometry method. Experiments were performed at four initial concentrations of halothane (0.1%, 0.5%, 1.0%, and 1.5% vol/vol). Enantiomeric differences in whole-body pharmacokinetics were assessed indirectly from the relative chamber atmosphere concentrations of halothane enantiomers. RESULTS: Concentrations of halothane decreased biphasically. The initial more rapid decrease was interpreted as incorporating absorption, distribution, and clearance; the slower decrease was interpreted as principally incorporating metabolic clearance. The ratio of concentrations of the two halothane enantiomers and of the ratios of the respective areas under the concentration-time curves remained constant without differing from unity at any time at any concentration of halothane. The dose-normalized areas under the concentration-time curves for the concentrations 0.1%, 0.5%, and 1.0% did not differ; that for 1.5% was significantly greater, suggesting nonlinear clearance, but the values did not differ significantly between enantiomers at any concentration. CONCLUSIONS: As there were no significant differences in concentrations of the two enantiomers in the chamber atmosphere, enantioselectivity was not demonstrated in the whole-body pharmacokinetics of halothane.  (+info)

Disposition of radioactivity in fischer 344 rats after single and multiple inhalation exposure to [(14)C]Octamethylcyclotetrasiloxane ([(14)C]D(4)). (11/168)

The retention, distribution, metabolism, and excretion of [(14)C]octamethylcyclotetrasiloxane (D(4)) were studied in Fischer 344 rats after single and multiple exposures to 7, 70, or 700 ppm [(14)C]D(4). Subset groups were established for body burden, distribution, and elimination. Retention of inhaled D(4) was relatively low (5-6% of inhaled D(4)). Radioactivity derived from [(14)C]D(4) inhalation was widely distributed to tissues of the rat. Maximum concentrations of radioactivity in plasma and tissues (except fat) occurred at the end of exposure and up to 3 h postexposure. Maximum concentrations of radioactivity in fat occurred as late as 24 h postexposure. Fat was a depot, elimination of radioactivity from this tissue was much slower than from plasma and other tissues. With minor exceptions, there were no consistent gender effects on the distribution of radioactivity and the concentrations of radioactivity were nearly proportional to exposure concentration over the exposure range. Excretion of radioactivity was via exhaled breath and urine, and, to a much lesser extent, feces. Urinary metabolites included dimethylsilanediol and methylsilanetriol plus five minor metabolites. Relative abundance of these metabolites was the same from every test group. Elimination was rapid during the first 24 h after exposure and was slower thereafter (measured up to 168 h postexposure). In singly-exposed female (but not male) rats, small dose-dependent shifts in elimination pathways were seen. After multiple exposures, the elimination pathways were dose- and gender-independent. These data define possible pathways for metabolism of D(4) and allow estimation of the persistence of D(4) and/or its metabolites in rats.  (+info)

Uptake of styrene in the upper respiratory tract of the CD mouse and Sprague-Dawley rat. (12/168)

Inspired styrene is an olfactory toxicant in the mouse and rat. To provide nasal dosimetric information, upper respiratory tract (URT) uptake efficiency (UE) of styrene was measured in the surgically isolated URT of the urethane-anesthetized CD mouse and Sprague Dawley rat throughout a 45-min exposure. In the first studies, the effect of inspiratory flow rate on styrene UE was examined. At flows of 12-, 24-, or 70-ml/min average UE of 17, 9.8, and 4.1%, respectively, were observed in the mouse. For the rat, UE averaged 14, 9.1 and 5.7% at flow rates of 70, 150, and 400 ml/min, respectively. In the second study, UE was measured at inspired concentrations of 5, 10, 25, 50, 100, or 200 ppm at a flow rate of 12 ml/min in the mouse and 70 ml/min in the rat in both naive and metyrapone (150 mg/kg sc) pretreated animals. In the rat, steady state UE decreased with increasing exposure concentration, averaging between 24 and 10% efficiency at 5 to 200 ppm (p < 0.0001). Metyrapone pretreatment resulted in statistically significant reductions in UE with steady-state UE averaging 10-14% at 5-200 ppm. Metyrapone pretreatment abolished the concentration dependence. In naive mice, styrene UE did not maintain a steady state, but steadily declined during exposure. The mechanisms of the non-steady state behavior are not known, but they appear to be due to a styrene metabolite, as evidenced by the fact that steady-state UE was observed in metyrapone-pretreated mice. In the mouse, UE averaged between 42 and 10% efficiency at 5 to 200 ppm (p < 0.0001). Metyrapone pretreatment resulted in statistically significant reductions in UE, with steady state UE averaging 20-10% at 5-200 ppm. As in the rat, metyrapone pretreatment abolished the concentration dependence. In toto, these data provide strong evidence that inspired styrene is metabolized in nasal tissues in the rat and mouse and that a metabolic basis exists for the observed inspired concentration dependence of UE.  (+info)

Prenatal toxicity of inhaled polymeric methylenediphenyl diisocyanate (MDI) aerosols in pregnant wistar rats. (13/168)

Mated Wistar rats, 25/group, were exposed to polymeric methylenediphenyl diisocyanate (MDI) aerosol of respirable size for 6 h/day, on gestational days (gd) 6 through 15, at 0, 1, 4, and 12 mg/m3. Maternal clinical signs, body weights, and feed and water consumption were measured throughout gestation. At scheduled sacrifice on gd 20, maternal body, gravid uterine, liver, and paired lung weights were documented. Corpora lutea were counted, implantation sites were identified: resorptions, dead and live fetuses, and placentas were weighed. All live fetuses were counted, sexed, weighed, and examined for external alterations; approximately 50% of the live fetuses/litter were preserved in Bouin's fixative and examined for visceral alterations, and the remaining live fetuses/ litter were cleared and stained with alizarin red S and examined for ossified skeletal alterations. Maternal toxicity was observed at 12 mg/m3, including mortality (2 of 24 pregnant), damage to the respiratory tract, reduced body weights and weight gain, reduced liver and increased lung weights, and reduced gravid uterine weight (the last not statistically significantly different from the control value). Developmental toxicity was also observed at 12 mg/m3, including reduced placental and fetal body weights and an increased incidence of fetal skeletal variations and skeletal retardations. There was no evidence of maternal or developmental toxicity at 1 or 4 mg/m3. The no observed adverse effect concentration for maternal and developmental toxicity was therefore 4 mg/m3. There were no treatment-related teratogenic effects at any concentrations evaluated.  (+info)

Operation Everest III: role of plasma volume expansion on VO(2)(max) during prolonged high-altitude exposure. (14/168)

We hypothesize that plasma volume decrease (DeltaPV) induced by high-altitude (HA) exposure and intense exercise is involved in the limitation of maximal O(2) uptake (VO(2)(max)) at HA. Eight male subjects were decompressed for 31 days in a hypobaric chamber to the barometric equivalent of Mt. Everest (8,848 m). Maximal exercise was performed with and without plasma volume expansion (PVX, 219-292 ml) during exercise, at sea level (SL), at HA (370 mmHg, equivalent to 6, 000 m after 10-12 days) and after return to SL (RSL, 1-3 days). Plasma volume (PV) was determined at rest at SL, HA, and RSL by Evans blue dilution. PV was decreased by 26% (P < 0.01) at HA and was 10% higher at RSL than at SL. Exercise-induced DeltaPV was reduced both by PVX and HA (P < 0.05). Compared with SL, VO(2)(max) was decreased by 58 and 11% at HA and RSL, respectively. VO(2)(max) was enhanced by PVX at HA (+9%, P < 0.05) but not at SL or RSL. The more PV was decreased at HA, the more VO(2)(max) was improved by PVX (P < 0.05). At exhaustion, plasma renin and aldosterone were not modified at HA compared with SL but were higher at RSL, whereas plasma atrial natriuretic factor was lower at HA. The present results suggest that PV contributes to the limitation of VO(2)(max) during acclimatization to HA. RSL-induced PVX, which may be due to increased activity of the renin-aldosterone system, could also influence the recovery of VO(2)(max).  (+info)

Peripheral chemoreflex function in hyperoxia following ventilatory acclimatization to altitude. (15/168)

After a period of ventilatory acclimatization to high altitude (VAH), a degree of hyperventilation persists after relief of the hypoxic stimulus. This is likely, in part, to reflect the altered acid-base status, but it may also arise, in part, from the development during VAH of a component of carotid body (CB) activity that cannot be entirely suppressed by hyperoxia. To test this hypothesis, eight volunteers undergoing a simulated ascent of Mount Everest in a hypobaric chamber were acutely exposed to 30 min of hyperoxia at various stages of acclimatization. For the second 10 min of this exposure, the subjects were given an infusion of the CB inhibitor, dopamine (3 microg. kg(-1). min(-1)). Although there was both a significant rise in ventilation (P < 0.001) and a fall in end-tidal PCO(2) (P < 0.001) with VAH, there was no progressive effect of dopamine infusion on these variables with VAH. These results do not support a role for CB in generating the persistent hyperventilation that remains in hyperoxia after VAH.  (+info)

Behavioral toxicology of carbon disulfide and toluene. (16/168)

Organic solvents are pervasive in the communal and industrial environments. Although many are potent central nervous system agents, clearly delineated behavioral effects have played only a minor role in the formation of exposure standards. A comprehensive behavioral pharmacology and toxicology of these compounds is one aim of US/USSR collaboration. The current report describes some actions of carbon disulfide and toulene. Earlier data about the actions of carbon disulfide on pigeon operant performance indicated disruption of schedule-controlled key-pecking. Primate data are now described from a situation designed to determine aversive thresholds to electrical stimulation. Effective concentrations of carbon disulfide produced both a rise in the amount of electric shock tolerated and a diminution of the response force exerted by the monkeys. In experiments with toluene, pigeons were shown to elevate key-pecking rate in an operant situation at certain concentrations. Toluene also was studied for its capacity to maintain self-administration in the same way as drugs of abuse. Monkeys worked to gain access to toulene vapor just as they work for opiates or amphetamines. The current experiments demonstrate how comprehensive the range of behavioral toxicology needs to be to deal with environmental health issues.  (+info)