Passive exchanges during water vapour absorption in mealworms (Tenebrio molitor): a new approach to studying the phenomenon. (1/768)

The weights of single mealworms were continuously recorded at 20 degrees C during exposure to periods of constant humidity and to abrupt changes in atmospheric vapour pressure. Two exchange stages were recognized in each animal. Weight changes were either limited to slow losses, suggesting transpiration through the external cuticle, or showed more rapid humidity-dependent gains as well as losses. Rapid exchanges indicated that water was gained or lost through permeable barriers, from a fluid compartmet of significantly lower vapour pressure than the haemolymph, equivalent to about 90% R.H. Weight gains and losses during humidity changes provided evidence of a significant, passively exchanging fluid compartment located between the exchange surface and absorbing mechanism. Weight changes in faecal pellets following their elimination provide further support for a rectal site of atmospheric absorption.  (+info)

Volatile anaesthetics and the atmosphere: atmospheric lifetimes and atmospheric effects of halothane, enflurane, isoflurane, desflurane and sevoflurane. (2/768)

The atmospheric lifetimes of the halogenated anaesthetics halothane, enflurane, isoflurane, desflurane and sevoflurane with respect to reaction with the hydroxyl radical (OH.) and UV photolysis have been determined from observations of OH. reaction kinetics and UV absorption spectra. Rate coefficients for the reaction with OH radicals for all halogenated anaesthetics investigated ranged from 0.44 to 2.7 x 10(-14) cm3 molec-1 s-1. Halothane, enflurane and isoflurane showed distinct UV absorption in the range 200-350 nm. In contrast, no absorption in this wavelength range was detected for desflurane or sevoflurane. The total atmospheric lifetimes, as derived from both OH. reactivity and photolysis, were 4.0-21.4 yr. It has been calculated that up to 20% of anaesthetics enter the stratosphere. As a result of chlorine and bromine content, the ozone depletion potential (ODP) relative to chlorofluorocarbon CFC-11 varies between 0 and 1.56, leading to a contribution to the total ozone depletion in the stratosphere of approximately 1% for halothane and 0.02% for enflurane and isoflurane. Estimates of the greenhouse warming potential (GWP) relative to CFC-12 yield values of 0.02-0.14, resulting in a relative contribution to global warming of all volatile anaesthetics of approximately 0.03%. The stratospheric impact of halothane, isoflurane and enflurane and their influence on ozone depletion is of increasing importance because of decreasing chlorofluorocarbons globally. However, the influence of volatile anaesthetics on greenhouse warming is small.  (+info)

Effects of in vitro atmospheric ammonia exposure on recovery rate and luminol-dependent chemiluminescence of bovine neutrophils and bronchoalveolar macrophages. (3/768)

The effects of atmospheric ammonia, a major pollutant in animal confinement facilities, on bovine neutrophils and bronchoalveolar macrophages were evaluated in vitro. Ammonia exposure at concentrations 50, 100 and 200 ppm for one hour impaired recovery rates of neutrophils dose-dependently but enhanced their chemiluminescence activity per cell at lower concentrations (50 and 100 ppm). Macrophages were resistant to the exposure. Their recovery rates and chemiluminescence remained unaffected even at 200 ppm exposure. The present results suggest that ammonia exposure is unfavorable for bovine neutrophils in vitro, and probably in vivo also, in light of causing cell damage and triggering wider inflammatory responses.  (+info)

Galileo imaging of atmospheric emissions from Io. (4/768)

The Galileo spacecraft has detected diffuse optical emissions from Io in high-resolution images acquired while the satellite was eclipsed by Jupiter. Three distinct components make up Io's visible emissions. Bright blue glows of more than 300 kilorayleighs emanate from volcanic plumes, probably due to electron impact on molecular sulfur dioxide. Weaker red emissions, possibly due to atomic oxygen, are seen along the limbs, brighter on the pole closest to the plasma torus. A faint green glow appears concentrated on the night side of Io, possibly produced by atomic sodium. Io's disk-averaged emission diminishes with time after entering eclipse, whereas the localized blue glows brighten instead.  (+info)

Archean molecular fossils and the early rise of eukaryotes. (5/768)

Molecular fossils of biological lipids are preserved in 2700-million-year-old shales from the Pilbara Craton, Australia. Sequential extraction of adjacent samples shows that these hydrocarbon biomarkers are indigenous and syngenetic to the Archean shales, greatly extending the known geological range of such molecules. The presence of abundant 2alpha-methylhopanes, which are characteristic of cyanobacteria, indicates that oxygenic photosynthesis evolved well before the atmosphere became oxidizing. The presence of steranes, particularly cholestane and its 28- to 30-carbon analogs, provides persuasive evidence for the existence of eukaryotes 500 million to 1 billion years before the extant fossil record indicates that the lineage arose.  (+info)

Increased summertime UV radiation in New Zealand in response to ozone loss. (6/768)

Long-term decreases in summertime ozone over Lauder, New Zealand (45 degrees S), are shown to have led to substantial increases in peak ultraviolet (UV) radiation intensities. In the summer of 1998-99, the peak sunburning UV radiation was about 12 percent more than in the first years of the decade. Larger increases were seen for DNA-damaging UV radiation and plant-damaging UV radiation, whereas UV-A (315 to 400 nanometers) radiation, which is insensitive to ozone, showed no increase, in agreement with model calculations. These results provide strong evidence of human-induced increases in UV radiation, in a region where baseline levels of UV radiation were already relatively high.  (+info)

Climate change as a regulator of tectonics on Venus. (7/768)

Tectonics, volcanism, and climate on Venus may be strongly coupled. Large excursions in surface temperature predicted to follow a global or near-global volcanic event diffuse into the interior and introduce thermal stresses of a magnitude sufficient to influence widespread tectonic deformation. This sequence of events accounts for the timing and many of the characteristics of deformation in the ridged plains of Venus, the most widely preserved volcanic terrain on the planet.  (+info)

The gravity field of Mars: results from Mars Global Surveyor. (8/768)

Observations of the gravity field of Mars reveal a planet that has responded differently in its northern and southern hemispheres to major impacts and volcanic processes. The rough, elevated southern hemisphere has a relatively featureless gravitational signature indicating a state of near-isostatic compensation, whereas the smooth, low northern plains display a wider range of gravitational anomalies that indicates a thinner but stronger surface layer than in the south. The northern hemisphere shows evidence for buried impact basins, although none large enough to explain the hemispheric elevation difference. The gravitational potential signature of Tharsis is approximately axisymmetric and contains the Tharsis Montes but not the Olympus Mons or Alba Patera volcanoes. The gravity signature of Valles Marineris extends into Chryse and provides an estimate of material removed by early fluvial activity.  (+info)