Nuclear factor kappaB signaling in atherogenesis. (17/6610)

Atherosclerosis is an inflammatory disease, characterized by the accumulation of macrophage-derived foam cells in the vessel wall and accompanied by the production of a wide range of chemokines, cytokines, and growth factors. These factors regulate the turnover and differentiation of immigrating and resident cells, eventually influencing plaque development. One of the key regulators of inflammation is the transcription factor nuclear factor kappaB (NF-kappaB), which, for a long time, has been regarded as a proatherogenic factor, mainly because of its regulation of many of the proinflammatory genes linked to atherosclerosis. NF-kappaB may play an important role in guarding the delicate balance of the atherosclerotic process as a direct regulator of proinflammatory and anti-inflammatory genes and as a regulator of cell survival and proliferation. Here we address recent literature on the function of NF-kappaB in inflammatory responses and its relation to atherosclerosis.  (+info)

Matrix metalloproteinase-9 modulation by resident arterial cells is responsible for injury-induced accelerated atherosclerotic plaque development in apolipoprotein E-deficient mice. (18/6610)

OBJECTIVE: Although matrix metalloproteinase-9 (MMP-9) has been implicated in atherosclerotic plaque instability, the exact role it plays in the plaque development and progression remains largely unknown. We generated apolipoprotein E (apoE)-deficient (apoE-/-) MMP-9-deficient (MMP-9-/-) mice to determine the mechanisms and the main cell source of MMP-9 responsible for the plaque composition during accelerated atherosclerotic plaque formation. METHODS AND RESULTS: Three weeks after temporary carotid artery ligation revealed that while on a Western-type diet, apoE-/- MMP-9-/- mice had a significant reduction in intimal plaque length and volume compared with apoE-/- MMP-9+/+ mice. The reduction in plaque volume correlated with a significantly lower number of intraplaque cells of resident cells and bone marrow-derived cells. To determine the cellular origin of MMP-9 in plaque development, bone marrow transplantation after total-body irradiation was performed with apoE-/- MMP-9+/+ and apoE-/- MMP-9-/- mice, which showed that only MMP-9 derived from resident arterial cells is required for plaque development. CONCLUSIONS: MMP-9 is derived from resident arterial cells and is required for early atherosclerotic plaque development and cellular accumulation in apoE-/- mice.  (+info)

Atherogenesis in mice does not require CD40 ligand from bone marrow-derived cells. (19/6610)

OBJECTIVE: Recent research suggests a central role for CD40 ligand (CD40L) in atherogenesis. However, the relevant cellular source of this proinflammatory cytokine remains unknown. To test the hypothesis that CD40L expressed on hematopoietic cell types (eg, macrophages, lymphocytes, platelets) is crucial to atherogenesis, we performed bone marrow reconstitution experiments using low-density receptor-deficient (ldlr-/-) and ldlr-/-/cd40l-/- compound-mutant mice. METHODS AND RESULTS: As expected, systemic lack of CD40L in hypercholesterolemic ldlr-/- mice significantly reduced the development of atherosclerotic lesions in the aortic arch, aortic root, and abdominal aorta compared with ldlr-/- mice. Furthermore, atheromata in ldlr-/-/cd40l-/- mice showed reduced accumulation of macrophages and lipids and increased content in smooth muscle cells and collagen compared with ldlr-/- mice. Surprisingly, reconstitution of irradiated ldlr-/- mice with ldlr-/-/cd40l-/- bone marrow did not affect the size or composition of atherosclerotic lesions in the root or arch of hypercholesterolemic ldlr-/- mice. Moreover, lipid deposition in the abdominal aorta diminished only marginally compared with mouse aortas reconstituted with ldlr-/- bone marrow. CONCLUSIONS: These experiments demonstrate that CD40L modulates atherogenesis, at least in mice, primarily by its expression on nonhematopoietic cell types rather than monocytes, T lymphocytes, or platelets, a surprising finding with important pathophysiologic and therapeutic implications.  (+info)

Differential activation of mitogenic signaling pathways in aortic smooth muscle cells deficient in superoxide dismutase isoforms. (20/6610)

OBJECTIVE: Reactive oxygen species (ROS) integrate cellular signaling pathways involved in aortic smooth muscle cell (SMC) proliferation and migration associated with atherosclerosis. However, the effect of subcellular localization of ROS on SMC mitogenic signaling is not yet fully understood. METHODS AND RESULTS: We used superoxide dismutase (SOD)-deficient mouse aortic SMCs to address the role of subcellular ROS localization on SMC phenotype and mitogenic signaling. Compared with wild-type, a 54% decrease in total SOD activity (almost equal to 50% decrease in SOD1 protein levels) and a 42% reduction in SOD2 activity (approximately equal to 50% decrease in SOD2 protein levels) were observed in SOD1+/- and SOD2+/- SMCs, respectively. Consistent with this, basal and thrombin-induced superoxide levels increased in these SMCs. SOD1+/- and SOD2+/- SMCs exhibit increased basal proliferation and enhanced [3H]-thymidine and [3H]-leucine incorporation in basal and thrombin-stimulated conditions. Our results indicate preferential activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinases in SOD1+/- and janus kinase/signal transducer and activator of transcriptase (JAK/STAT) pathway in SOD2+/- SMCs. Pharmacological inhibitors of ERK1/2 p38 and JAK2 confirm the SOD genotype-dependent SMC proliferation. CONCLUSIONS: Our results suggest that SOD1 and SOD2 regulate SMC quiescence by suppressing divergent mitogenic signaling pathways, and dysregulation of these enzymes under pathophysiological conditions may lead to SMC hyperplasia and hypertrophy.  (+info)

Response of apolipoprotein E*3-Leiden transgenic mice to dietary fatty acids: combining liver proteomics with physiological data. (21/6610)

Dietary fatty acids have a profound impact on atherosclerosis, but mechanisms are not fully understood. We studied the effects of a saturated fat diet supplemented with fish oil, trans10,cis12 conjugated linoleic acid (CLA), or elaidic acid on lipid and glucose metabolism and liver protein levels of APOE*3 Leiden transgenic mice, a model for lipid metabolism and atherosclerosis. Fish oil lowered plasma and liver cholesterol and triglycerides, plasma free fatty acids, and glucose but increased plasma insulin. CLA lowered plasma cholesterol but increased plasma and liver triglycerides, plasma beta-hydroxybutyrate, and insulin. Elaidic acid lowered plasma and liver cholesterol. Proteomics identified significant regulation of 65 cytosolic and 8-membrane proteins. Many of these proteins were related to lipid and glucose metabolism, and to oxidative stress. Principal component analysis revealed that fish oil had a major impact on cytosolic proteins, and elaidic acid on membrane proteins. Correlation analysis between physiological and protein data revealed novel clusters of correlated variables, among which a metabolic syndrome cluster. The combination of proteomics and physiology gave new insights in mechanisms by which these dietary fatty acids regulate lipid metabolism and related pathways, for example, by altering protein levels of long-chain acyl-CoA thioester hydrolase and adipophilin in the liver.  (+info)

Atherosclerosis in aged mice over-expressing the reverse cholesterol transport genes. (22/6610)

We determined whether over-expression of one of the three genes involved in reverse cholesterol transport, apolipoprotein (apo) AI, lecithin-cholesterol acyl transferase (LCAT) and cholesteryl ester transfer protein (CETP), or of their combinations influenced the development of diet-induced atherosclerosis. Eight genotypic groups of mice were studied (AI, LCAT, CETP, LCAT/AI, CETP/AI, LCAT/CETP, LCAT/AI/CETP, and non-transgenic) after four months on an atherogenic diet. The extent of atherosclerosis was assessed by morphometric analysis of lipid-stained areas in the aortic roots. The relative influence (R2) of genotype, sex, total cholesterol, and its main sub-fraction levels on atherosclerotic lesion size was determined by multiple linear regression analysis. Whereas apo AI (R2 = 0.22, P < 0.001) and CETP (R2 = 0.13, P < 0.01) expression reduced lesion size, the LCAT (R2 = 0.16, P < 0.005) and LCAT/AI (R2 = 0.13, P < 0.003) genotypes had the opposite effect. Logistic regression analysis revealed that the risk of developing atherosclerotic lesions greater than the 50th percentile was 4.3-fold lower for the apo AI transgenic mice than for non-transgenic mice, and was 3.0-fold lower for male than for female mice. These results show that apo AI overexpression decreased the risk of developing large atherosclerotic lesions but was not sufficient to reduce the atherogenic effect of LCAT when both transgenes were co-expressed. On the other hand, CETP expression was sufficient to eliminate the deleterious effect of LCAT and LCAT/AI overexpression. Therefore, increasing each step of the reverse cholesterol transport per se does not necessarily imply protection against atherosclerosis while CETP expression can change specific atherogenic scenarios.  (+info)

Flow-mediated dilatation is impaired by a high-saturated fat diet but not by a high-carbohydrate diet. (23/6610)

OBJECTIVE: It is unknown whether a low-fat diet, which may elevate triglycerides and lower high-density lipoprotein (HDL) cholesterol, harms the endothelium. Our aim was to determine whether a low-fat, high-carbohydrate (CARB) diet impaired endothelial vasodilation compared with high saturated fat (SFA), monounsaturated fat (MUFA), or polyunsaturated fat (PUFA) diets. METHODS AND RESULTS: Forty healthy subjects were randomly crossed over to 4, 3-week isocaloric diets high in PUFA, MUFA, or SFA, containing at least 25 g of the relevant fat or a low-fat, CARB, high-glycemic load diet. Flow-mediated dilatation (FMD), fasting blood lipids, high sensitivity C-reactive protein, plasma intercellular, and vascular adhesion molecules plasma E- and P-selectin were measured after each intervention. SFA impaired FMD compared with all other diets (5.41+/-2.45% versus 10.80+/-3.69%; P=0.01). FMD did not change on CARB relative to MUFA or PUFA, despite 23% to 39% rises in triglyceride and 10% to 15% falls in HDL cholesterol. P-selectin was highest after SFA (121+/-52.7 ng/mL) versus MUFA (98+/-44.5 ng/mL; P=0.001) and PUFA (96+/-36.4 ng/mL; P=0.001). CONCLUSIONS: High SFA caused deterioration in FMD compared with high PUFA, MUFA, or CARB diets. Inflammatory responses may also be increased on this diet.  (+info)

N-cadherin-dependent cell-cell contacts promote human saphenous vein smooth muscle cell survival. (24/6610)

OBJECTIVE: Vascular smooth muscle cell (VSMC) apoptosis is thought to contribute to atherosclerotic plaque instability. Cadherin mediates calcium-dependent homophilic cell-cell contact. We studied the role of N-cadherin in VSMC apoptosis. METHODS AND RESULTS: Human saphenous vein VSMCs were grown in agarose-coated wells to allow cadherin-mediated aggregate formation. Cell death and apoptosis were determined after disruption of cadherins using several approaches (n> or =3 per approach). Calcium removal from culture medium or addition of nonspecific cadherin antagonist peptides significantly decreased aggregate formation and increased cell death by apoptosis (34+/-6% versus 75+/-1% and 19+/-1% versus 40+/-5%, respectively; P<0.05). Specific inhibition of N-cadherin using antagonists and neutralizing antibodies similarly increased apoptosis. Supporting this, overexpression of full-length N-cadherin significantly reduced VSMC apoptosis from 44+/-10% to 20+/-3% (P<0.05), whereas abolishing N-cadherin expression by overexpression of a dominant-negative N-cadherin significantly, even in the presence of cell-matrix contacts, increased apoptosis from 9+/-2% to 50+/-1% (P<0.05). Interestingly, cell-cell contacts provided a similar degree of protection from apoptosis to cell-matrix contacts. Finally, N-cadherin-mediated cell-cell contacts initiated anti-apoptotic signaling by increasing Akt and Bad phosphorylation. CONCLUSIONS: Our results indicate that VSMC survival is dependent on N-cadherin-mediated cell-cell contacts, which could be important in the context of plaque instability.  (+info)