The ATM protein is required for sustained activation of NF-kappaB following DNA damage. (9/586)

Cells lacking an intact ATM gene are hypersensitive to ionizing radiation and show multiple defects in the cell cycle-coupled checkpoints. DNA damage usually triggers cell cycle arrest through, among other things, the activation of p53. Another DNA-damage responsive factor is NF-kappaB. It is activated by various stress situations, including oxidative stress, and by DNA-damaging compounds such as topoisomerase poisons. We found that cells from Ataxia Telangiectasia patients exhibit a defect in NF-kappaB activation in response to treatment with camptothecin, a topoisomerase I poison. In AT cells, this activation is shortened or suppressed, compared to that observed in normal cells. Ectopic expression of the ATM protein in AT cells increases the activation of NF-kappaB in response to camptothecin. MO59J glioblastoma cells that do not express the DNA-PK catalytic subunit respond normally to camptothecin. These results support the hypothesis that NF-kappaB is a DNA damage-responsive transcription factor and that its activation pathway by DNA damage shares some components with the one leading to p53 activation.  (+info)

Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. (10/586)

Mutations resulting in defective splicing constitute a significant proportion (30/62 [48%]) of a new series of mutations in the ATM gene in patients with ataxia-telangiectasia (AT) that were detected by the protein-truncation assay followed by sequence analysis of genomic DNA. Fewer than half of the splicing mutations involved the canonical AG splice-acceptor site or GT splice-donor site. A higher percentage of mutations occurred at less stringently conserved sites, including silent mutations of the last nucleotide of exons, mutations in nucleotides other than the conserved AG and GT in the consensus splice sites, and creation of splice-acceptor or splice-donor sites in either introns or exons. These splicing mutations led to a variety of consequences, including exon skipping and, to a lesser degree, intron retention, activation of cryptic splice sites, or creation of new splice sites. In addition, 5 of 12 nonsense mutations and 1 missense mutation were associated with deletion in the cDNA of the exons in which the mutations occurred. No ATM protein was detected by western blotting in any AT cell line in which splicing mutations were identified. Several cases of exon skipping in both normal controls and patients for whom no underlying defect could be found in genomic DNA were also observed, suggesting caution in the interpretation of exon deletions observed in ATM cDNA when there is no accompanying identification of genomic mutations.  (+info)

Breast cancer risk in ataxia telangiectasia (AT) heterozygotes: haplotype study in French AT families. (11/586)

Epidemiological studies in ataxia telangiectasia (AT) families have suggested that AT heterozygotes could have an increased cancer risk, especially breast cancer (BC) in women. It has also been suggested that an increased sensibility of AT heterozygotes to the effect of ionizing radiation could be responsible for the increased BC risk. BC relative risk (RR) estimation in AT heterozygotes within families ascertained through AT children is presented here. Family data collected included demographic characteristics, occurrence of cancers, past radiation exposures and blood samples. DNA samples were studied using seven ATM linked microsatellites markers allowing AT haplotypes reconstitution. The relative risk of BC was assessed using French estimated incidence rates. A significant increase risk of BC is found among obligate ATM heterozygotes with a point estimate of 3.32 (P = 0.002). BC relative risk calculated according to age is significantly increased among the obligate ATM heterozygotes female relatives with an age < or = 44 years (RR = 4.55, P = 0.005). The BC relative risk is statistically borderline among the obligate ATM heterozygote female relatives with an age > or = 45 years (RR = 2.48, P = 0.08). The estimated BC relative risk among ATM heterozygotes is consistent with previously published data. However, the increased risk is only a little higher than classical reproductive risk factors and similar to the risk associated with a first-degree relative affected by BC.  (+info)

Defective control of apoptosis and mitotic spindle checkpoint in heterozygous carriers of ATM mutations. (12/586)

Ataxia telangiectasia (AT) carrier-derived lymphoblastoid cell lines (AT-LCLs/hetero) with suboptimal ATM protein expression were examined for the regulation of radiosensitivity, apoptosis, and mitotic spindle checkpoint in response to DNA-damaging agents. Although AT-LCLs/hetero showed intermediate radiation sensitivity, as determined by clonogenic assay, they were resistant to early-onset apoptosis, as much as AT patient-derived LCLs (AT-LCLs/homo). Furthermore, two of three AT-LCLs/hetero showed defective mitotic spindle checkpoint control in response to X-ray irradiation, which is a recently characterized biological feature in AT-LCLs/homo. Our findings indicate that carriers of ATM mutation have biological abnormalities due to haploinsufficiency of ATM protein or dominant-negative effect of mutant ATM protein. Thus, although it is still controversial whether ATM mutation carriers are at higher risk for cancer during adulthood, our findings based on in vitro biological indicators support the notion that at least some of such carriers are at a higher risk for cancer development than those without ATM mutation. Our findings may help to reevaluate epidemiological studies on cancer susceptibility in AT carriers.  (+info)

MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. (13/586)

The yeast Sir2/3/4p complex is found in abundance at telomeres, where it participates in the formation of silent heterochromatin and telomere maintenance. Here, we show that Sir3p is released from telomeres in response to DNA double-strand breaks (DSBs), binds to DSBs, and mediates their repair, independent of cell mating type. Sir3p relocalization is S phase specific and, importantly, requires the DNA damage checkpoint genes MEC1 and RAD9. MEC1 is a homolog of ATM, mutations in which cause ataxia telangiectasia (A-T), a disease characterized by various neurologic and immunologic abnormalities, a predisposition for cancer, and a cellular defect in repair of DSBs. This novel mode by which preformed DNA repair machinery is mobilized by DNA damage sensors may have implications for human diseases resulting from defective DSB repair.  (+info)

Atm inactivation results in aberrant telomere clustering during meiotic prophase. (14/586)

A-T (ataxia telangiectasia) individuals frequently display gonadal atrophy, and Atm-/- mice show spermatogenic failure due to arrest at prophase of meiosis I. Chromosomal movements take place during meiotic prophase, with telomeres congregating on the nuclear envelope to transiently form a cluster during the leptotene/zygotene transition (bouquet arrangement). Since the ATM protein has been implicated in telomere metabolism of somatic cells, we have set out to investigate the effects of Atm inactivation on meiotic telomere behavior. Fluorescent in situ hybridization and synaptonemal complex (SC) immunostaining of structurally preserved spermatocytes I revealed that telomere clustering occurs aberrantly in Atm-/- mice. Numerous spermatocytes of Atm-/- mice displayed locally accumulated telomeres with stretches of SC near the clustered chromosome ends. This contrasted with spermatogenesis of normal mice, where only a few leptotene/zygotene spermatocytes I with clustered telomeres were detected. Pachytene nuclei, which were much more abundant in normal mice, displayed telomeres scattered over the nuclear periphery. It appears that the timing and occurrence of chromosome polarization is altered in Atm-/- mice. When we examined telomere-nuclear matrix interactions in spermatocytes I, a significant difference was observed in the ratio of soluble versus matrix-associated telomeric DNA sequences between meiocytes of Atm-/- and control mice. We propose that the severe disruption of spermatogenesis during early prophase I in the absence of functional Atm may be partly due to altered interactions of telomeres with the nuclear matrix and distorted meiotic telomere clustering.  (+info)

Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. (15/586)

Deletion in chromosome bands 11q22-q23 is one of the most common chromosome aberrations in B-cell chronic lymphocytic leukemia (B-CLL). It is associated with extensive lymph node involvement and poor survival. The minimal consensus deletion comprises a segment, which contains the ATM gene presenting an interesting candidate gene, as mutations in ATM predispose A-T patients to lymphoid malignancies. To investigate a potential pathogenic role of ATM in B-cell tumorigenesis, we performed mutation analysis of ATM in 29 malignant lymphomas of B-cell origin (B-CLL = 27; mantle cell lymphoma, [MCL] = 2). Twenty-three of these carried an 11q22-q23 deletion. In five B-CLLs and one MCL with deletion of one ATM allele, a point mutation in the remaining allele was detected, which resulted in aberrant transcript splicing, alteration, or truncation of the protein. In addition, mutation analysis identified point mutations in three cases without 11q deletion: two B-CLLs with one altered allele and one MCL with both alleles mutated. In four cases analyzed, the ATM alterations were not present in the germ line indicating a somatic origin of the mutations. Our study demonstrates somatic disruption of both alleles of the ATM gene by deletion or point mutation and thus its pathogenic role in sporadic B-cell lineage tumors.  (+info)

Defective regulation of Ca2+/calmodulin-dependent protein kinase II in gamma-irradiated ataxia telangiectasia fibroblasts. (16/586)

Recent indirect evidence suggests that a Ca2+/ calmodulin-dependent pathway, which may involve calmodulin-dependent protein kinase II (CaMKII), mediates the S-phase delay manifested by gamma-ray-exposed human fibroblasts. This pathway is severely impaired in ataxia telangiectasia (A-T) cells [Mirzayans et al. (1995) Oncogene 11, 15971. To extend these findings, we assayed CaMKII activity in irradiated normal and A-T fibroblasts. The radiation treatment induced the autonomous activity of the kinase in normal cells. In contrast, this activity was not elevated in either (i) normal cells pretreated with the selective CaMKII antagonist KN-62 or (ii) gamma-irradiated A-T cells. Moreover, A-T fibroblasts, unlike normal cells, failed to mobilize intracellular Ca2+ upon mitogenic stimulation. These findings identify a novel role for CaMKII in radiation-induced signal transduction and suggest its involvement in effecting the S-phase delay. The data also implicate ATM, the product of the gene responsible for A-T, as a key mediator of both intracellular Ca2+ mobilization and CaMKII activation in response not only to genotoxic stress but also to physiological stimuli.  (+info)