Localization of a portion of extranuclear ATM to peroxisomes. (33/586)

The gene mutated in the human genetic disorder ataxia-telangiectasia codes for a protein, ATM, the known functions of which include response to DNA damage, cell cycle control, and meiotic recombination. Consistent with these functions, ATM is predominantly present in the nucleus of proliferating cells; however, a significant proportion of the protein has also been detected outside the nucleus in cytoplasmic vesicles. To understand the possible role of extra-nuclear ATM, we initially investigated the nature of these vesicles. In this report we demonstrate that a portion of ATM co-localizes with catalase, that ATM is present in purified mouse peroxisomes, and that there are reduced levels of ATM in the post-mitochondrial membrane fraction of cells from a patient with a peroxisome biogenesis disorder. Furthermore the use of the yeast two-hybrid system demonstrated that ATM interacts directly with a protein involved in the import of proteins into the peroxisome matrix. Because peroxisomes are major sites of oxidative metabolism, we investigated catalase activity and lipid hydroperoxide levels in normal and A-T fibroblasts. Significantly decreased catalase activity and increased lipid peroxidation was observed in several A-T cell lines. The localization of ATM to peroxisomes may contribute to the pleiotropic nature of A-T.  (+info)

Telomerase inhibition by peptide nucleic acids reverses 'immortality' of transformed human cells. (34/586)

Telomerase activity, the ability to add telomeric repeats to the ends of chromosomes, has been detected in most immortal cell lines including tumor cells, but is low or absent in most diploid, mortal cells such as those of somatic tissues. Peptide nucleic acids (PNAs), analogs of DNA or RNA which bind to complementary nucleic acids with very high affinity, were co-electroporated into immortal human cells along with a selectable plasmid. Introduction of PNAs inverse-complementary to telomerase RNA effectively inhibited telomerase activity in intact cells, shortened telomeres, reduced colony size, and arrested cell proliferation after a lag period of 5-30 cell generations, consistent with suppression of their 'immortality'. Electroporation of selection plasmid alone had no effect, while PNAs of altered sequence were markedly less effective in each assay. This constitutes the first demonstration of cell growth arrest through telomerase inhibition, upon treatment of intact cells with an exogenous compound which can be efficiently delivered in vivo. The phenotype of telomerase-inhibited transformed cells differs from senescence of normal diploid fibroblasts, but rather resembles the crisis state of incompletely transformed cells.  (+info)

Rescue of defective T cell development and function in Atm-/- mice by a functional TCR alpha beta transgene. (35/586)

The Atm-/- mice recapitulate most of the defects observed in ataxia-telangiectasia (A-T) patients, including a high incidence of lymphoid tumors and immune defects characterized by defective T cell differentiation, thymus hypoplasia, and defective T-dependent immune responses. To understand the basis of the T cell developmental defects in Atm-/- mice, a functional TCR alpha beta transgene was introduced into these mutant mice. Analysis of the Atm-/-TCR alpha beta+ mice indicated that the transgenic TCR alpha beta can rescue the defective T cell differentiation and partially rescue the thymus hypoplasia in Atm-/- mice, indicating that thymocyte positive selection is normal in the Atm-/- mice. In addition, cell cycle analysis of the thymocytes derived from Atm-/-TCR alpha beta+ and control mice suggested that Atm is involved in the thymocyte expansion. Finally, evaluation of the T-dependent immune responses in Atm-/-TCR alpha beta+ mice indicated that Atm is dispensable for normal T cell function. Therefore, the defective T-dependent immune responses in Atm-/- mice must be secondary to greatly reduced T cell numbers in these mutant mice.  (+info)

Spontaneous and oxidative stress-induced programmed cell death in lymphocytes from patients with ataxia telangiectasia (AT). (36/586)

T cell lymphopenia in the peripheral blood lymphocytes (PBL) of patients with AT is mainly caused by a decrease of naive CD45RA+/CD4+ cells followed by a predominance of memory CD45RO+ lymphocytes. To relate these findings to the regulation of programmed cell death, we investigated the activation state and apoptotic level of PBL in 12 patients and healthy controls by flow cytometry. In accordance with previous investigations, the number of naive CD4+/CD45RA+ cells was significantly decreased in patients compared with healthy controls. This disturbed balance of CD45RA and CD45RO was also reflected in higher amounts of activated HLA-DR and CD95 expressing cells, with a concomitant decrease of Bcl-2 protected lymphocytes in the T cell population. With regard to its role in preventing oxidative-induced cell death, we analysed Bcl-2 expression and apoptosis in the presence of oxidative stress. In culture, cells of patients are more susceptible to spontaneous programmed cell death. However, in our stress-inducing system (hypoxanthine/xanthine oxidase system) the number of cells undergoing apoptosis was lower in patients' cell populations compared with controls. In addition, preliminary results suggest that Bcl-2 expression and level of spontaneous apoptosis in patients can be modified by IL-2 and interferon-gamma.  (+info)

The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. (37/586)

We show that hypomorphic mutations in hMRE11, but not in ATM, are present in certain individuals with an ataxia-telangiectasia-like disorder (ATLD). The cellular features resulting from these hMRE11 mutations are similar to those seen in A-T as well as NBS and include hypersensitivity to ionizing radiation, radioresistant DNA synthesis, and abrogation of ATM-dependent events, such as the activation of Jun kinase following exposure to gamma irradiation. Although the mutant hMre11 proteins retain some ability to interact with hRad50 and Nbs1, formation of ionizing radiation-induced hMre11 and Nbs1 foci was absent in hMRE11 mutant cells. These data demonstrate that ATM and the hMre11/hRad50/Nbs1 protein complex act in the same DNA damage response pathway and link hMre11 to the complex pathology of A-T.  (+info)

c-Abl tyrosine kinase is not essential for ataxia telangiectasia mutated functions in chromosomal maintenance. (38/586)

c-Abl is activated by DNA damage in an ataxia telangiectasia mutated (ATM)-dependent manner and plays important roles in growth arrest and apoptosis induced by DNA damage. c-Abl also interacts physically and functionally with Rad51, a key molecule in homologous recombinational (HR) DNA repair. To study further the roles of c-Abl in HR DNA repair, we generated c-Abl(-/-) and ATM(-/-)/c-Abl(-/-) mutant cell lines from a chicken B lymphocyte DT40 cell line, comparing the phenotypes of these mutants to those of ATM(-/-) DT40 cells that we had created previously. We found that the time course of radiation-induced Rad51 focus formation is abnormal in ATM(-/-) DT40 cells, consistent with the observation that ATM(-/-) DT40 cells display hypersensitivity to ionizing radiation and highly elevated frequencies of both spontaneous and radiation-induced chromosomal aberrations. In contrast, c-Abl(-/-) cells did not show these ATM-related defects in their cellular response to radiation, nor did the disruption of c-Abl in ATM(-/-) DT40 cells exacerbate these ATM-related defects. However, c-Abl(-/-) DT40 cells, but not ATM(-/-) DT40 cells, were resistant to radiation-induced apoptosis, indicating an important role for c-Abl in this cellular response to ionizing radiation. These results therefore indicate that, although ATM plays an important role in genome maintenance, c-Abl is not essential for this ATM function. These findings suggest that c-Abl and ATM play important roles in the maintenance of the cell homeostasis in response to DNA damage that are, at least in part, independent.  (+info)

The controlling role of ATM in homologous recombinational repair of DNA damage. (39/586)

The human genetic disorder ataxia telangiectasia (A-T), caused by mutation in the ATM gene, is characterized by chromosomal instability, radiosensitivity and defective cell cycle checkpoint activation. DNA double-strand breaks (dsbs) persist in A-T cells after irradiation, but the underlying defect is unclear. To investigate ATM's interactions with dsb repair pathways, we disrupted ATM along with other genes involved in the principal, complementary dsb repair pathways of homologous recombination (HR) or non-homologous end-joining (NHEJ) in chicken DT40 cells. ATM(-/-) cells show altered kinetics of radiation-induced Rad51 and Rad54 focus formation. Ku70-deficient (NHEJ(-)) ATM(-/-) chicken DT40 cells show radiosensitivity and high radiation-induced chromosomal aberration frequencies, while Rad54-defective (HR(-)) ATM(-/-) cells show only slightly elevated aberration levels after irradiation, placing ATM and HR on the same pathway. These results reveal that ATM defects impair HR-mediated dsb repair and may link cell cycle checkpoints to HR activation.  (+info)

Atm deficiency causes an increased frequency of intrachromosomal homologous recombination in mice. (40/586)

Ataxia telangiectasia (AT) patients have inactivating mutations in both copies of the ATM gene. The ATM protein that the gene encodes is involved in DNA double-strand break (DSB) recognition; in its absence, p53 response to DSBs is delayed and reduced. In addition, AT patients have a high propensity for cancer, and cells from these patients show chromosomal instability. Here, using an in vivo mouse model system with the pink-eyed unstable mutation, we demonstrate that the absence of functional Atm results in a significantly elevated frequency of intrachromosomal recombination resulting in deletion events (wild-type 17.73%, heterozygous Atm 15.72%, and mutant Atm 30.33%). No such increase was observed in mice heterozygous for Atm. These results further advocate the role of ATM in maintaining genomic integrity after the onset of endogenous damage. This system relies on the initiation of events during a relatively short time frame to produce an observable deletion product. AT patients have a lifelong exposure to endogenous damage and perhaps similarly acting external agents. Because 25% of our genome consists of repeated elements, genomic instability due to an increased level of homologous recombination between such repeats, as observed here, may contribute to carcinogenesis in AT patients.  (+info)