Ataxia, ocular telangiectasia, chromosome instability, and Langerhans cell histiocytosis in a patient with an unknown breakage syndrome. (1/764)

An 8 year old boy who had Langerhans cell histiocytosis when he was 15 months old showed psychomotor regression from the age of 2 years. Microcephaly, severe growth deficiency, and ocular telangiectasia were also evident. Magnetic nuclear resonance imaging showed cerebellar atrophy. Alphafetoprotein was increased. Chromosome instability after x irradiation and rearrangements involving chromosome 7 were found. Molecular study failed to show mutations involving the ataxia-telangiectasia gene. This patient has a clinical picture which is difficult to relate to a known breakage syndrome. Also, the relationship between the clinical phenotype and histiocytosis is unclear.  (+info)

Biological activity of netilmicin, a broad-spectrum semisynthetic aminoglycoside antibiotic. (2/764)

Netilmicin (Sch 20569) is a new broad-spectrum semisynthetic aminoglycoside derived from sisomicin. Netilmicin was compared to gentamicin, tobramycin, and amikacin in a variety of in vitro test systems as well as in mouse protection tests. Netilmicin was found to be similar in activity to gentamicin against aminoglycoside-susceptible strains in both in vitro and in vivo tests. Netilmicin was also active against many aminoglycoside-resistant strains of gram-negative bacteria, particularly those known to possess adenylating enzymes (ANT 2') or those with a similar resistance pattern. Netilmicin was found to be markedly less toxic than gentamicin in chronic studies in cats, although gentamicin appeared less toxic in acute toxicity tests in mice. The concentrations of netilmicin and gentamicin in serum were compared in dogs after intramuscular dosing, and the pharmacokinetics including peak concentrations in serum were found to be similar.  (+info)

Targeted disruption of the murine Nhe1 locus induces ataxia, growth retardation, and seizures. (3/764)

In most cells, the ubiquitously expressed Na+/H+ exchanger isoform 1 (NHE1) is thought to be a primary regulator of pH homeostasis, cell volume regulation, and the proliferative response to growth factor stimulation. To study the function of NHE1 during embryogenesis when these cellular processes are very active, we targeted the Nhe1 gene by replacing the sequence encoding transmembrane domains 6 and 7 with the neomycin resistance gene. NHE activity assays on isolated acinar cells indicated that the targeted allele is functionally null. Although the absence of NHE1 is compatible with embryogenesis, Nhe1 homozygous mutants (-/-) exhibit a decreased rate of postnatal growth that is first evident at 2 wk of age. At this time, Nhe1 -/- animals also begin to exhibit ataxia and epileptic-like seizures. Approximately 67% of the -/- mutants die before weaning. Postmortem examinations frequently revealed an accumulation of a waxy particulate material inside the ears, around the eyes and chin, and on the ventral surface of the paws. Histological analysis of adult tissues revealed a thickening of the lamina propria and a slightly atrophic glandular mucosa in the stomach.  (+info)

Anticonvulsant efficacy of N-methyl-D-aspartate antagonists against convulsions induced by cocaine. (4/764)

Convulsions associated with cocaine abuse can be life threatening and resistant to standard emergency treatment. Cocaine (75 mg/kg, i. p.) produced clonic convulsions in approximately 90% of male, Swiss-Webster mice. A variety of clinically used antiepileptic agents did not significantly protect against cocaine convulsions (e. g., diazepam and phenobarbital). Anticonvulsants in clinical practice that did significantly protect against convulsion did so only at doses with significant sedative/ataxic effects (e.g., clonazepam and valproic acid). In contrast, functional N-methyl-D-aspartate (NMDA) antagonists all produced dose-dependent and significant protection against the convulsant effects of cocaine. Anticonvulsant efficacy was achieved by blockade of both competitive and noncompetitive modulatory sites on the NMDA receptor complex. Thus, competitive antagonists, ion-channel blockers, polyamine antagonists, and functional blockers of the strychnine-insensitive glycine modulatory site all prevented cocaine seizures. The role of NMDA receptors in the control of cocaine-induced convulsions was further strengthened by the positive correlation between the potencies of noncompetititve antagonists or competitive antagonists to block convulsions and their respective affinities for their specific binding sites on the NMDA receptor complex. Although some NMDA blockers produced profound behavioral side effects at efficacious doses (e.g., noncompetitive antagonists), others (e.g., some low-affinity channel blockers, some competitive antagonists, and glycine antagonists) demonstrated significant and favorable separation between their anticonvulsant and side effect profiles. The present results provide the most extensive evidence to date identifying NMDA receptor blockade as a potential strategy for the discovery of agents for clinical use in averting toxic sequelae from cocaine overdose. Given the literature suggesting a role for these drugs in other areas of drug abuse treatments, NMDA receptor antagonists sit in a unique position as potential therapeutic candidates.  (+info)

Neurotoxicity and behavioral effects of thiram in rats. (5/764)

Eight of 24 female rats fed 66.9 mg/kg-day of thiram developed neurotoxicity. The neurotoxic effects were characterized by ataxia and paralysis of the hind legs. There were demyelination, degeneration of the axis cylinders, and presence of macrophages in the nerve bundle of the sciatic nerve. Degeneration in the ventral horn of the lower lumbar region of the spinal cord was evidenced by chromatolysis of motorneurons, pyknosis, and satellitosis. During a second experiment, 4 of 24 females fed 65.8 mg/kg--day also developed ataxia and paralysis. An additional 9 females showed clasping of the hind feet when picked up by the tail. Nerve conduction could not be measured for one severely ataxic rat and the electromyogram indicated a loss of motor unit function. Histopathology of this rat, along with the others, suggests the peripheral nerve as the primary site of the lesion. Thiram also caused behavioral changes in apparently normal rats. The walking pattern of the hind legs was altered with decreases in stride width and the angle between contralateral steps. These rats required significantly more shock-motivations and cleared a lower height in a jump/climb ability test. An open-field study indicated that thiram caused hyperactivity in the nonataxic rats of both sexes. Three of 24 rats fed 95.8 mg/kg-day of ferbam also developed ataxia or paralysis.  (+info)

A lysosomal storage disease induced by Ipomoea carnea in goats in Mozambique. (6/764)

A novel plant-induced lysosomal storage disease was observed in goats from a village in Mozambique. Affected animals were ataxic, with head tremors and nystagmus. Because of a lack of suitable feed, the animals consumed an exotic hedge plant growing in the village that was identified as Ipomoea carnea (shrubby morning glory, Convolvulaceae). The toxicosis was reproduced by feeding I. carnea plant material to goats. In acute cases, histologic changes in the brain and spinal cord comprised widespread cytoplasmic vacuolation of neurons and glial cells in association with axonal spheroid formation. Ultrastructurally, cytoplasmic storage vacuoles in neurons were membrane bound and consistent with lysosomes. Cytoplasmic vacuolation was also found in neurons in the submucosal and mesenteric plexuses in the small intestine, in renal tubular epithelial cells, and in macrophage-phagocytic cells in the spleen and lymph nodes in acute cases. Residual alterations in the brain in chronic cases revealed predominantly cerebellar lesions characterized by loss of Purkinje neurons and gliosis of the Purkinje cell layer. Analysis of I. carnea plant material by gas chromatography-mass spectrometry established the presence of the mannosidase inhibitor swainsonine and 2 glycosidase inhibitors, calystegine B2 and calystegine C1, consistent with a plant-induced alpha-mannosidosis in the goats. The described storage disorder is analogous to the lysosomal storage diseases induced by ingestion of locoweeds (Astragalus and Oxytropis) and poison peas (Swainsona).  (+info)

A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. (7/764)

Episodic ataxia type 1 (EA1) is a rare autosomal dominant disorder characterized by brief episodes of ataxia associated with continuous interattack myokymia. Point mutations in the human voltage-gated potassium channel (Kv1.1) gene on chromosome 12p13 have recently been shown to associate with EA1. A Scottish family with EA1 harbouring a novel mutation in this gene is reported. Of the five affected individuals over three generations, two had partial epilepsy in addition to EA1. The detailed clinical, electrophysiological and molecular genetic findings are presented. The heterozygous point mutation is located at nucleotide position 677 and results in a radical amino acid substitution at a highly conserved position in the second transmembrane domain of the potassium channel. Functional studies indicated that mutant subunits exhibited a dominant negative effect on potassium channel function and would be predicted to impair neuronal repolarization. Potassium channels determine the excitability of neurons and blocking drugs are proconvulsant. A critical review of previously reported EA1 families shows an over-representation of epilepsy in family members with EA1 compared with unaffected members. These observations indicate that this mutation is pathogenic and suggest that the epilepsy in EA1 may be caused by the dysfunctional potassium channel. It is possible that such dysfunction may be relevant to other epilepsies in man.  (+info)

Neurotoxic effects of 2,5-hexanedione on normal and neurofilament-deficient quail. (8/764)

The neurotoxic effects of 2,5-hexanedione (2,5-HD) were investigated using neurofilament (NF)-deficient (Quv) Japanese quail in comparison with normal Japanese quail. Both Quv and normal Japanese quail were inoculated intraperitoneally with 350 mg/kg/day 2,5-HD for 6 consecutive wk. The results of 2,5-HD exposure differed substantially between the 2 strains of Japanese quail. The 2,5-HD-exposed normal quail showed leg paralysis about 4 wk after initiation of dosing. Some treated normal quail fell into dysstasia and died of nutritional disturbances. Histologically, 2,5-HD-treated normal quail had NF-rich axonal swellings and degeneration in the distal parts of the peripheral nerves, spinal cord, and cerebellar peduncles. In contrast, 2,5-HD-injected Quv quail showed tonic convulsion, ataxia gait, severe quivering, and excitation about 2-3 days after administration. Some treated Quv birds died immediately after systemic tonic convulsion, probably because of asphyxia. Although all treated Quv quail showed neurologic signs, there were no recognizable 2,5-HD-induced lesions in the nervous system. After about 4-6 wk of dosing, 2,5-HD induced distal axonopathy in normal quail and acute neurotoxicity in Quv quail.  (+info)