Acquisition of eyeblink conditioning is critically dependent on normal function in cerebellar cortical lobule HVI. (57/1661)

Classical conditioning of the nictitating membrane response (NMR)/eyeblink response of rabbits is a simple form of cerebellar-dependent, associative motor learning. Reversible inactivations of the cerebellar nuclei and inferior olive have implicated the olivo-cortico-nuclear loop in the acquisition of nictitating membrane conditioning, but the role of the cerebellar cortex in acquisition has not been tested directly. Here we have used local infusions of the water-soluble, disodium salt of 6-cyano-7-nitroquinoxaline-2,3-dione reversibly to block cerebellar cortical AMPA/kainate receptors in lobule HVI during acquisition training. After the drug effects dissipated, there was no evidence that acquisition had taken place; the subjects behaved as if naive. Further training without inactivation then allowed normal acquisition, and further inactivations during performance of conditioned responses abolished these established responses. There was a strong correlation between the inactivation effects on acquisition and subsequent inactivation effects on performance, indicating that the same eyeblink-control cortical microzones are engaged in learning and expressing this behavior. The cortical component of the olivo-cortico-nuclear loop is essential for acquisition of classically conditioned nictitating membrane response learning, and eyeblink control areas in HVI are critical. Our findings are consistent with models of cerebellar learning that assign essential plasticity to the cortex or to a distribution between levels in olivo-cortico-nuclear modules.  (+info)

Reward unpredictability inside and outside of a task context as a determinant of the responses of tonically active neurons in the monkey striatum. (58/1661)

Tonically active neurons (TANs) in the monkey striatum are involved in detecting motivationally relevant stimuli. We recently provided evidence that the timing of conditioned stimuli strongly influences the responsiveness of TANs, the source of which is likely to be the monkey's previous experience with particular temporal regularities in sequential task events. To extend these findings, we investigated the relationship of TAN responses to a primary liquid reward, the timing of which is more or less predictable to the monkey either outside of a task or during instrumental task performance. Reward predictability was indexed by the timing characteristics of the mouth movements. The responsiveness of TANs to reward increased with the range and variability of time periods before reward, notably when the liquid was delivered outside of a task. A change in the temporal order of events in a task context produced an increase of response to reward, suggesting an influence of the predicted nature of the event in addition to its time of occurrence. By contrast, we observed no substantial changes in neuronal activity at the expected time of reward when this event failed to occur, suggesting that these neurons do not appear to carry information about an error in reward prediction. These results demonstrate that TANs constitute a neuronal system that is involved in detecting unpredicted reward events, irrespective of the specific behavioral situation in which such events occur. The responses influenced by stimulus prediction may constitute a neuronal basis for the notion that striatal processing is crucial for habit learning.  (+info)

The contribution of activity-dependent synaptic plasticity to classical conditioning in Aplysia. (59/1661)

Plasticity at central synapses has long been thought to be the most likely mechanism for learning and memory, but testing that idea experimentally has proven to be difficult. For this reason, we have developed a simplified preparation of the Aplysia siphon withdrawal reflex that allows one to examine behavioral learning and memory while simultaneously monitoring synaptic connections between individual identified neurons in the CNS. We previously found that monosynaptic connections from LE siphon sensory neurons to LFS siphon motor neurons make a substantial contribution to the reflex in the siphon withdrawal preparation (Antonov et al., 1999a). We have now used that preparation to assess the contribution of various cellular mechanisms to classical conditioning of the reflex with a siphon tap conditioned stimulus (CS) and tail shock unconditioned stimulus (US). We find that, compared with unpaired training, paired training with the CS and US produces greater enhancement of siphon withdrawal and evoked firing of LFS neurons, greater facilitation of the complex PSP elicited in an LFS neuron by the siphon tap, and greater facilitation of the monosynaptic PSP elicited by stimulation of a single LE neuron. Moreover, the enhanced facilitation of monosynaptic LE-LFS PSPs is greater for LE neurons that fire during the siphon tap and correlates significantly with the enhancement of siphon withdrawal and evoked firing of the LFS neurons. These results provide the most direct evidence to date that activity-dependent plasticity at specific central synapses contributes to behavioral conditioning and support the idea that synaptic plasticity is a mechanism of learning and memory more generally.  (+info)

Simple and associative recognition memory in the hippocampal region. (60/1661)

Although it is well established that the hippocampal region is involved in the formation of declarative memory, the exact nature of its involvement is unclear. One view is that the hippocampal region is involved only in tasks that require the formation or use of associations. According to this view, the hippocampal region is not involved in traditional tests of recognition memory. An alternative view is that the hippocampal region combines and extends the processing carried out by structures in the parahippocampal gyrus and that it is involved in all forms of declarative memory, including recognition memory. Using event-related functional magnetic resonance imaging (fMRI), we observed hippocampal activity during both traditional and associative recognition memory tasks. Critically, the hippocampal region was no more active in the associative recognition task than in the traditional recognition task.  (+info)

Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. (61/1661)

The question of whether any non-human species displays episodic memory is controversial. Associative accounts of animal learning recognize that behaviour can change in response to single events but this does not imply that animals need or are later able to recall representations of unique events at a different time and place. The lack of language is also relevant, being the usual medium for communicating about the world, but whether it is critical for the capacity to represent and recall events is a separate matter. One reason for suspecting that certain animals possess an episodic-like memory system is that a variety of learning and memory tasks have been developed that, even though they do not meet the strict criteria required for episodic memory, have an 'episodic-like' character. These include certain one-trial learning tasks, scene-specific discrimination learning, multiple reversal learning, delayed matching and non-matching tasks and, most recently, tasks demanding recollection of 'what, where and when' an event happened. Another reason is that the neuronal architecture of brain areas thought to be involved in episodic memory (including the hippocampal formation) are substantially similar in mammals and, arguably, all vertebrates. Third, our developing understanding of activity-dependent synaptic plasticity (which is a candidate neuronal mechanism for encoding memory traces) suggests that its expression reflects certain physiological characteristics that are ideal components of a neuronal episodic memory system. These include the apparently digital character of synaptic change at individual terminals and the variable persistence of potentiation accounted for by the synaptic tag hypothesis. A further value of studying episodic-like memory in animals is the opportunity it affords to model certain kinds of neurodegenerative disease that, in humans, affect episodic memory. An example is recent work on a transgenic mouse that over-expresses a mutation of human amyloid precursor protein (APP) that occurs in familial Alzheimer's disease, under the control of platelet derived (PD) growth factor promoter (the PDAPP mouse). A striking age- and amyloid plaque-related deficit is seen using a task in which the mice have to keep changing their memory representation of the world rather than learn a single fact.  (+info)

Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. (62/1661)

Fear conditioning is a form of associative learning in which subjects come to express defense responses to a neutral conditioned stimulus (CS) that is paired with an aversive unconditioned stimulus (US). Considerable evidence suggests that critical neural changes mediating the CS-US association occur in the lateral nucleus of the amygdala (LA). Further, recent studies show that associative long-term potentiation (LTP) occurs in pathways that transmit the CS to LA, and that drugs that interfere with this LTP also disrupt behavioral fear conditioning when infused into the LA, suggesting that associative LTP in LA might be a mechanism for storing memories of the CS-US association. Here, we develop a detailed cellular hypothesis to explain how neural responses to the CS and US in LA could induce LTP-like changes that store memories during fear conditioning. Specifically, we propose that the CS evokes EPSPs at sensory input synapses onto LA pyramidal neurons, and that the US strongly depolarizes these same LA neurons. This depolarization, in turn, causes calcium influx through NMDA receptors (NMDARs) and also causes the LA neuron to fire action potentials. The action potentials then back-propagate into the dendrites, where they collide with CS-evoked EPSPs, resulting in calcium entry through voltage-gated calcium channels (VGCCs). Although calcium entry through NMDARs is sufficient to induce synaptic changes that support short-term fear memory, calcium entry through both NMDARs and VGCCs is required to initiate the molecular processes that consolidate synaptic changes into a long-term memory.  (+info)

Learning in networks of cortical neurons. (63/1661)

The results presented here demonstrate selective learning in a network of real cortical neurons. We focally stimulate the network at a low frequency (0.3-1 Hz) until a desired predefined response is observed 50 +/- 10 msec after a stimulus, at which point the stimulus is stopped for 5 min. Repeated cycles of this procedure ultimately lead to the desired response being directly elicited by the stimulus. By plotting the number of stimuli required to achieve the target response in each cycle, we are able to generate learning curves. Presumably, the repetitive stimulation is driving changes in the circuit, and we are selecting for changes consistent with the predefined desired response. To the best of our knowledge, this is the first time learning of arbitrarily chosen tasks, in networks composed of real cortical neurons, is demonstrated outside of the body.  (+info)

Functions of the medial frontal cortex in the processing of conflict and errors. (64/1661)

A principal function of the medial frontal cortex, in particular the anterior cingulate cortex (ACC), is to monitor action. The error-related negativity (ERN, or N(E)), an event-related brain potential, reflects medial frontal action-monitoring processes. Specifically, the error-detection theory of the ERN states that the ERN reflects ACC processing that is directly related to detecting the error. This theory predicts that ERN and ACC activity should increase directly with the dissimilarity of the error from the correct response, with similarity defined with respect to the common movement features of the responses. In contrast, the conflict-detection theory claims that ACC and ERN activity represent the detection of response conflict. This theory predicts that the activity should increase directly with the similarity of the error and the correct response. To test these theories, we investigated the effects of response similarity and conflict on the ERN, using a task that involved hand and foot movements. ERN activity was largest under conditions of high response conflict, where the error was similar to the correct response. This finding favors the conflict-detection theory over the error-detection theory, although the ERN was not associated with posterror slowing, as predicted by proponents of both theories. Discrepancies between our results and those of past studies may stem from the use in previous studies of four-finger response tasks which are subject to unique physiological and biomechanical constraints. We conclude that the ERN reflects medial frontal activity involved in the detection or affective processing of response conflict.  (+info)