The TamA protein fused to a DNA-binding domain can recruit AreA, the major nitrogen regulatory protein, to activate gene expression in Aspergillus nidulans. (17/357)

The areA gene of Aspergillus nidulans encodes a GATA zinc finger transcription factor that activates the expression of a large number of genes subject to nitrogen metabolite repression. The amount and activity of the AreA protein under different nitrogen conditions is modulated by transcriptional, post-transcriptional, and post-translational controls. One of these controls of AreA activity has been proposed to involve the NmrA protein interacting with the DNA-binding domain and the extreme C terminus of AreA to inhibit DNA binding under nitrogen sufficient conditions. In contrast, mutational evidence suggests that the tamA gene has a positive role together with areA in regulating the expression of genes subject to nitrogen metabolite repression. This gene was identified by the selection of mutants resistant to toxic nitrogen source analogues, and a number of nitrogen metabolic activities have been shown to be reduced in these mutants. To investigate the role of this gene we have used constructs encoding the TamA protein fused to the DNA-binding domain of either the FacB or the AmdR regulatory proteins. These hybrid proteins have been shown to activate expression of the genes of acetate or GABA utilization, respectively, as well as the amdS gene. Strong activation was shown to require the AreA protein but was not dependent on AreA binding to DNA. The homologous areA gene of A. oryzae and nit-2 gene of Neurospora crassa can substitute for A. nidulans areA in this interaction. We have shown that the same C-terminal region of AreA and NIT-2 that is involved in the interaction with NmrA is required for the TamA-AreA interaction. However, it is unlikely that TamA requires the same residues as NmrA within the GATA DNA-binding domain of AreA.  (+info)

Identification of an NADH-cytochrome b(5) reductase gene from an arachidonic acid-producing fungus, Mortierella alpina 1S-4, by sequencing of the encoding cDNA and heterologous expression in a fungus, Aspergillus oryzae. (18/357)

Based on the sequence information for bovine and yeast NADH-cytochrome b(5) reductases (CbRs), a DNA fragment was cloned from Mortierella alpina 1S-4 after PCR amplification. This fragment was used as a probe to isolate a cDNA clone with an open reading frame encoding 298 amino acid residues which show marked sequence similarity to CbRs from other sources, such as yeast (Saccharomyces cerevisiae), bovine, human, and rat CbRs. These results suggested that this cDNA is a CbR gene. The results of a structural comparison of the flavin-binding beta-barrel domains of CbRs from various species and that of the M. alpina enzyme suggested that the overall barrel-folding patterns are similar to each other and that a specific arrangement of three highly conserved amino acid residues (i.e., arginine, tyrosine, and serine) plays a role in binding with the flavin (another prosthetic group) through hydrogen bonds. The corresponding genomic gene, which was also cloned from M. alpina 1S-4 by means of a hybridization method with the above probe, had four introns of different sizes. These introns had GT at the 5' end and AG at the 3' end, according to a general GT-AG rule. The expression of the full-length cDNA in a filamentous fungus, Aspergillus oryzae, resulted in an increase (4.7 times) in ferricyanide reduction activity involving the use of NADH as an electron donor in the microsomes. The M. alpina CbR was purified by solubilization of microsomes with cholic acid sodium salt, followed by DEAE-Sephacel, Mono-Q HR 5/5, and AMP-Sepharose 4B affinity column chromatographies; there was a 645-fold increase in the NADH-ferricyanide reductase specific activity. The purified CbR preferred NADH over NADPH as an electron donor. This is the first report of an analysis of this enzyme in filamentous fungi.  (+info)

Heterologous expression and product identification of Colletotrichum lagenarium polyketide synthase encoded by the PKS1 gene involved in melanin biosynthesis. (19/357)

The Colletotrichum lagenarium PKS1 gene was expressed in the heterologous fungal host, Aspergillus oryzae, under the starch-inducible alpha-amylase promoter to identify the direct product of polyketide synthase (PKS) encoded by the PKS1 gene. The main compound produced by an A. oryzae transformant was isolated and characterized to be 1,3,6,8-tetrahydroxynaphthalene (T4HN) as its tetraacetate. Since the PKS1 gene was cloned from C. lagenarium to complement the nonmelanizing albino mutant, T4HN was assumed to be an initial biosynthetic intermediate, and thus the product of the PKS reaction, but had not been isolated from the fungus. The production of T4HN by the PKS1 transformant unambiguously identified the gene to encode a PKS of pentaketide T4HN. In addition, tetraketide orsellinic acid and pentaketide isocoumarin were isolated, the latter being derived from a pentaketide monocyclic carboxylic acid, as by-products of the PKS1 PKS reaction. Production of the pentaketide carboxylic acid provided insights into the mechanism for the PKS1 polyketide synthase reaction to form T4HN.  (+info)

Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase lcc1. (20/357)

A laccase from Coprinus cinereus is active at alkaline pH, an essential property for some potential applications. We cloned and sequenced three laccase genes (lcc1, lcc2, and lcc3) from the ink cap basidiomycete C. cinereus. The lcc1 gene contained 7 introns, while both lcc2 and lcc3 contained 13 introns. The predicted mature proteins (Lcc1 to Lcc3) are 58 to 80% identical at the amino acid level. The predicted Lcc1 contains a 23-amino-acid C-terminal extension rich in arginine and lysine, suggesting that C-terminal processing may occur during its biosynthesis. We expressed the Lcc1 protein in Aspergillus oryzae and purified it. The Lcc1 protein as expressed in A. oryzae has an apparent molecular mass of 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and absorption maxima at 278 and 614 nm. Based on the N-terminal protein sequence of the laccase, a 4-residue propeptide was processed during the maturation of the enzyme. The dioxygen specificity of the laccase showed an apparent K(m) of 21 +/- 2 microM and a catalytic constant of 200 +/- 10 min(-1) for O(2) with 2, 2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) as the reducing substrate at pH 5.5. Lcc1 from A. oryzae may be useful in industrial applications. This is the first report of a basidiomycete laccase whose biosynthesis involves both N-terminal and C-terminal processing.  (+info)

Purification and characterization of the overexpressed Aspergillus oryzae xylanase, XynF1. (21/357)

The Aspergillus oryzae xynF1 gene coding for a xylanase, XynF1, was successfully overexpressed under the strong A. oryzae TEF1 gene promoter. The high-XynF1-producing transformant secreted about 180 mg/l of XynF1 in the glucose-containing medium. The overexpressed XynF1 was purified by only one chromatographic step. The purified XynF1 had a molecular mass of 35.0 kDa, a pH optimum of 5.0, and a temperature optimum of 60 degrees C.  (+info)

Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP, of Geotrichum candidum Dec 1. (22/357)

Efficient expression of the dye-decolorizing peroxidase, DyP, from Geotrichum candidum Dec 1 in Aspergillus oryzae M-2-3 was achieved by fusing mature cDNA encoding dyp with the A. oryzae alpha-amylase promoter (amyB). The activity yield of the purified recombinant DyP (rDyP) was 42-fold compared with that of the purified native DyP from Dec 1. No exogenous heme was necessary for the expression of rDyP in A. oryzae. From the N-terminal amino acid sequence analyses of native DyP and rDyP, the absence of a histidine residue in both DyPs, which was considered to be important for heme binding of DyP, was confirmed. These results suggest that rDyP without a typical heme-binding region produced by A. oryzae exhibits a function similar to that of native DyP.  (+info)

Evidence that the glucoamylases and alpha-amylase secreted by Aspergillus niger are proteolytically processed products of a precursor enzyme. (23/357)

A 125-kDa starch hydrolysing enzyme of Aspergillus niger characterised by its ability to dextrinise and saccharify starch [Suresh et al. (1999) Appl. Microbiol. Biotechnol. 51, 673-675] was also found to possess activity towards raw starch. Segregation of these activities in the 71-kDa glucoamylase and a 53-kDa alpha-amylase-like enzyme supported by antibody cross-reactivity studies and the isolation of mutants based on assay screens for the secretion of particular enzyme forms revealed the 125-kDa starch hydrolysing enzyme as their precursor. N-terminal sequence analysis further revealed that the 71-kDa glucoamylase was the N-terminal product of the precursor enzyme. Immunological cross reactivity of the 53-kDa amylase with antibodies raised against the precursor enzyme but not with the 71- and 61-kDa glucoamylase antibodies suggested that this enzyme activity is represented by the C-terminal fragment of the precursor. The N-terminal sequence of the 53-kDa protein showed similarity to the reported Taka amylase of Aspergillus oryzae. Antibody cross-reactivity to a 10-kDa non-enzymic peptide and a 61-kDa glucoamylase described these proteins as products of the 71-kDa glucoamylase. Identification of only the precursor starch hydrolysing enzyme in the protein extracts of fungal protoplasts suggested proteolytic processing in the cellular periplasmic space as the cause for the secretion of multiple forms of amylases by A. niger.  (+info)

Molecular cloning and characterization of rpbA encoding RNA polymerase II largest subunit from a filamentous fungus, Aspergillus oryzae. (24/357)

We have cloned rpbA encoding the RNA polymerase II largest subunit (polIIL) from a filamentous fungus, Aspergillus oryzae. The rpbA product included eight highly conserved regions and the carboxyl-terminal domain (CTD). A. oryzae polIIL CTD with 184 amino acids was composed of 25 CTD consensus repeats, which was a similar number to those of lower eukaryotes. The amino acids in each repeat of A. oryzae polIIL, however, conformed less to the CTD consensus than those of polIILs from other lower eukaryotes.  (+info)