Identification of two mannoproteins released from cell walls of a Saccharomyces cerevisiae mnn1 mnn9 double mutant by reducing agents. (49/2015)

In this report, we present the identification of the main polypeptides that are extracted from purified cell walls of a Saccharomyces cerevisiae mnn1 mnn9 strain by reducing agents. Treatment of the purified cell walls of this strain with beta-mercaptoethanol releases several mannoproteins, of which three, with apparent sizes of 120, 45, and 40 kDa, are the most abundant. Analysis of the amino-terminal sequences revealed that the 120-kDa mannoprotein is Bar1p, the protease involved in the so-called barrier activity in yeast cells, and that the 45- and 40-kDa mannoproteins are the Kex2-unprocessed and Kex2-processed forms of the gene product of open reading frame (ORF) YJL158c, an ORF that belongs to the PIR (protein with internal repeats) family of genes, composed thus far of PIR1, PIR2/HSP150, and PIR3. Accordingly we have named this gene PIR4, and Pir4 denotes the 40-kDa Kex2-processed form of the mannoprotein. We have characterized Pir4 and have shown the feasibility of using it as a fusion partner for the targeting of recombinant proteins to the cell wall.  (+info)

Molecular characterization of proteolytic processing of the Gag proteins of human spumavirus. (50/2015)

Spumaviruses, or foamy viruses, express Gag proteins that are incompletely processed by the viral protease in cell cultures. To delineate the proteolytic cleavage sites between potential Gag subdomains, recombinant human spumaretrovirus (HSRV) Gag proteins of different lengths were expressed, purified by affinity chromatography, and subjected to HSRV protease assays. HSRV-specific proteolytic cleavage products were isolated and characterized by Western blotting. Peptides spanning potential cleavage sites, as deduced from the sizes of the proteolytic cleavage products, were chemically synthesized and assayed with HSRV protease. The cleaved peptides were then subjected to mass spectrometry. In control experiments, HSRV protease-deficient mutant proteins were used to rule out unspecific processing by nonviral proteases. The cleavage site junctions identified and the calculated sizes of the cleavage products were in agreement with those of the authentic cleavage products of the HSRV Gag proteins detectable in viral proteins from purified HSRV particles and in virus-infected cells. The biological significance of the data was confirmed by mutational analysis of the cleavage sites in a recombinant Gag protein and in the context of the infectious HSRV DNA provirus.  (+info)

Purification and characterization of the yeast glycosylphosphatidylinositol-anchored, monobasic-specific aspartyl protease yapsin 2 (Mkc7p). (51/2015)

The Saccharomyces cerevisiae YPS2 (formerly MKC7) gene product is a glycosylphosphatidylinositol-linked aspartyl protease that functions as a yeast secretase. Here, the glycosylphosphatidylinositol-linked form of yapsin 2 (Mkc7p) was purified to homogeneity from the membrane fraction of an overexpressing yeast strain. Purified yapsin 2 migrated diffusely in SDS-polyacrylamide gel electrophoresis (molecular mass approximately 200 kDa), suggesting extensive, heterogeneous glycosylation. Studies using internally quenched fluorogenic peptide substrates revealed cleavage by the enzyme carboxyl to Lys or Arg. No cleavage was seen when both Lys and Arg were absent. No significant enhancement was seen with multiple basic residues. However, cleavage always occurred carboxyl to the most COOH-terminal basic residue. V(max)/K(m) was insensitive to P(2) and P(3) residues except that Pro at P(2) blocked cleavage entirely. These results suggest that yapsin 2 is a monobasic amino acid-specific protease that requires a basic residue at P(1) and excludes basic residues from P(1)'. The pH dependence of V(max)/K(m) for a substrate containing a pro-alpha factor cleavage site was bell-shaped, with a maximum near pH 4.0. However, V(max)/K(m) for a substrate mimicking the alpha-secretase site in human beta amyloid precursor protein was optimal near pH 6.0, consistent with cleavage of beta amyloid precursor protein by yapsin 2 when expressed in yeast.  (+info)

The expression of secreted aspartyl proteinases of Candida species in human whole saliva. (52/2015)

The expression of secreted aspartyl proteinases (Saps) by clinical isolates of Candida albicans, C. tropicalis and C. parapsilosis in human saliva supplemented with glucose and in a proteinase-inducing medium (YCB-BSA), was investigated. Also, yeast growth, pH fluctuation and total protein concentration of the saliva cultures during incubation were measured. Sap expression was assessed by evaluating the enzyme activity as well as the antigen concentration. Saps were expressed well in human saliva supplemented with glucose by all three Candida species, although greater expressions was found in YCB-BSA medium. C. albicans isolates were significantly more proteolytic than the non-albicans isolates. In general, for all three species, the rate of yeast growth, pH fluctuation and percentage reduction of total salivary protein concentration concurred with the degree of expression of Saps. These data strongly suggest that Saps of C. albicans, C. tropicalis and C. parapsilosis may play an active role in the progression of oral candidoses, particularly with regard to the abundance of low pH microenvironments in the oral cavity, which are regularly replenished with dietary carbohydrates.  (+info)

Inhibition of growth and secreted aspartyl proteinase production in Candida albicans by lysozyme. (53/2015)

Lysozyme (muramidase) is a non-specific, antimicrobial protein ubiquitous in human mucosal secretions such as saliva. Although its antibacterial and antifungal activities are well recognised, there are no data on the specific concentrations necessary to affect the growth of Candida albicans or about the effect of lysozyme on the production of secreted aspartyl proteinase (Sap), a putative virulence factor of C. albicans. Five Sap-producing isolates of C. albicans were cultured in YCB-BSA medium with various concentrations of lysozyme to examine its effect on yeast cell growth, ultrastructural cellular topography and extracellular and intracellular Sap concentration and activity. Lysozyme was candidacidal at high concentrations and decreased significantly the extracellular Sap concentration at sublethal doses, accompanied by intracellular accumulation of the enzyme. At low concentrations of lysozyme (c. 10 microg/ml), Sap activity decreased more than two-fold and Sap concentration decreased five-fold without any appreciable effect on cell growth or viability. Ultrastructural investigations showed ballooned cells and cells with invaginations (especially present near bud scars), indicating that cell-wall components may be possible targets for this enzyme. All concentrations of lysozyme tested were well within physiologically attainable levels. These data suggest that lysozyme has, at least, a bimodal action on C. albicans, killing the organism at higher concentrations and modulating Sap metabolism at lower concentrations.  (+info)

Activation and routing of membrane-tethered prohormone convertases 1 and 2. (54/2015)

Many peptide hormones and neuropeptides are processed by members of the subtilisin-like family of prohormone convertases (PCs), which are either soluble or integral membrane proteins. PC1 and PC2 are soluble PCs that are primarily localized to large dense core vesicles in neurons and endocrine cells. We examined whether PC1 and PC2 were active when expressed as membrane-tethered proteins, and how tethering to membranes alters the biosynthesis, enzymatic activity, and intracellular routing of these PCs. PC1 and PC2 chimeras were constructed using the transmembrane domain and cytoplasmic domain of the amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The membrane-tethered PCs were rerouted from large dense core vesicles to the Golgi region. In addition, the chimeras were transiently expressed at the cell surface and rapidly internalized to the Golgi region in a fashion similar to PAM. Membrane-tethered PC1 and PC2 exhibited changes in pro-domain maturation rates, N-glycosylation, and in the pH and calcium optima required for maximal enzymatic activity against a fluorogenic substrate. In addition, the PC chimeras efficiently cleaved endogenous pro-opiomelanocortin to the correct bioactive peptides. The PAM transmembrane domain/cytoplasmic domain also prevented stimulated secretion of pro-opiomelanocortin products in AtT-20 cells.  (+info)

Two di-leucine-based motifs account for the different subcellular localizations of the human endothelin-converting enzyme (ECE-1) isoforms. (55/2015)

Endothelin-converting enzyme (ECE-1) is a type II integral membrane protein which plays a key role in the biosynthetic pathway of the vasoconstricting endothelins. Three ECE-1 isoforms, differing by their N-terminal cytoplasmic tails, are generated from a single gene. When expressed in CHO cells, they display comparable enzymatic activity but whereas ECE-1a is strongly expressed at the cell surface, ECE-1b is exclusively intracellular and ECE-1c presents an intermediate distribution. In the present study these different localizations were further described at the ultrastructural level, by electron microscope immunocytochemistry. To characterize the motifs responsible for the intracellular localization of ECE-1b we constructed chimeric proteins and point mutants. Two di-leucine-based motifs, contained in the N-terminal part of ECE-1b, were thus identified. One of these motifs (LV), displayed by both ECE-1b and ECE-1c, accounts for the reduced surface expression of ECE-1c as compared to ECE-1a. Mutation of both motifs (LL and LV) induces a very strong appearance of ECE-1b at the cell surface indicating that their presence in the N-terminal extremity of ECE-1b is critical for its exclusively intracellular localization.  (+info)

Glycosylphosphatidylinositol-anchored proteins play an important role in the biogenesis of the Alzheimer's amyloid beta-protein. (56/2015)

The Alzheimer's amyloid protein (Abeta) is released from the larger amyloid beta-protein precursor (APP) by unidentified enzymes referred to as beta- and gamma-secretase. beta-Secretase cleaves APP on the amino side of Abeta producing a large secreted derivative (sAPPbeta) and an Abeta-bearing C-terminal derivative that is subsequently cleaved by gamma-secretase to release Abeta. Alternative cleavage of the APP by alpha-secretase at Abeta16/17 releases the secreted derivative sAPPalpha. In yeast, alpha-secretase activity has been attributed to glycosylphosphatidylinositol (GPI)-anchored aspartyl proteases. To examine the role of GPI-anchored proteins, we specifically removed these proteins from the surface of mammalian cells using phosphatidylinositol-specific phospholipase C (PI-PLC). PI-PLC treatment of fetal guinea pig brain cultures substantially reduced the amount of Abeta40 and Abeta42 in the medium but had no effect on sAPPalpha. A mutant CHO cell line (gpi85), which lacks GPI-anchored proteins, secreted lower levels of Abeta40, Abeta42, and sAPPbeta than its parental line (GPI+). When this parental line was treated with PI-PLC, Abeta40, Abeta42, and sAPPbeta decreased to levels similar to those observed in the mutant line, and the mutant line was resistant to these effects of PI-PLC. These findings provide strong evidence that one or more GPI-anchored proteins play an important role in beta-secretase activity and Abeta secretion in mammalian cells. The cell-surface GPI-anchored protein(s) involved in Abeta biogenesis may be excellent therapeutic target(s) in Alzheimer's disease.  (+info)