Regulation and function of ascorbate peroxidase isoenzymes. (33/206)

Even under optimal conditions, many metabolic processes, including the chloroplastic, mitochondrial, and plasma membrane-linked electron transport systems of higher plants, produce active oxygen species (AOS). Furthermore, the imposition of biotic and abiotic stress conditions can give rise to excess concentrations of AOS, resulting in oxidative damage at the cellular level. Therefore, antioxidants and antioxidant enzymes function to interrupt the cascades of uncontrolled oxidation in each organelle. Ascorbate peroxidase (APX) exists as isoenzymes and plays an important role in the metabolism of H(2)O(2) in higher plants. APX is also found in eukaryotic algae. The characterization of APX isoenzymes and the sequence analysis of their clones have led to a number of investigations that have yielded interesting and novel information on these enzymes. Interestingly, APX isoenzymes of chloroplasts in higher plants are encoded by only one gene, and their mRNAs are generated by alternative splicing of the gene's two 3'-terminal exons. Manipulation of the expression of the enzymes involved in the AOS-scavenging systems by gene-transfer technology has provided a powerful tool for increasing the present understanding of the potential of the defence network against oxidative damage caused by environmental stresses. Transgenic plants expressing E. coli catalase to chloroplasts with increased tolerance to oxidative stress indicate that AOS-scavenging enzymes, especially chloroplastic APX isoenzymes are sensitive under oxidative stress conditions. It is clear that a high level of endogenous ascorbate is essential effectively to maintain the antioxidant system that protects plants from oxidative damage due to biotic and abiotic stresses.  (+info)

Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. (34/206)

The aim of this review is to assess the mode of action and role of antioxidants as protection from heavy metal stress in roots, mycorrhizal fungi and mycorrhizae. Based on their chemical and physical properties three different molecular mechanisms of heavy metal toxicity can be distinguished: (a) production of reactive oxygen species by autoxidation and Fenton reaction; this reaction is typical for transition metals such as iron or copper, (b) blocking of essential functional groups in biomolecules, this reaction has mainly been reported for non-redox-reactive heavy metals such as cadmium and mercury, (c) displacement of essential metal ions from biomolecules; the latter reaction occurs with different kinds of heavy metals. Transition metals cause oxidative injury in plant tissue, but a literature survey did not provide evidence that this stress could be alleviated by increased levels of antioxidative systems. The reason may be that transition metals initiate hydroxyl radical production, which can not be controlled by antioxidants. Exposure of plants to non-redox reactive metals also resulted in oxidative stress as indicated by lipid peroxidation, H(2)O(2) accumulation, and an oxidative burst. Cadmium and some other metals caused a transient depletion of GSH and an inhibition of antioxidative enzymes, especially of glutathione reductase. Assessment of antioxidative capacities by metabolic modelling suggested that the reported diminution of antioxidants was sufficient to cause H(2)O(2) accumulation. The depletion of GSH is apparently a critical step in cadmium sensitivity since plants with improved capacities for GSH synthesis displayed higher Cd tolerance. Available data suggest that cadmium, when not detoxified rapidly enough, may trigger, via the disturbance of the redox control of the cell, a sequence of reactions leading to growth inhibition, stimulation of secondary metabolism, lignification, and finally cell death. This view is in contrast to the idea that cadmium results in unspecific necrosis. Plants in certain mycorrhizal associations are less sensitive to cadmium stress than non-mycorrhizal plants. Data about antioxidative systems in mycorrhizal fungi in pure culture and in symbiosis are scarce. The present results indicate that mycorrhization stimulated the phenolic defence system in the Paxillus-Pinus mycorrhizal symbiosis. Cadmium-induced changes in mycorrhizal roots were absent or smaller than those in non-mycorrhizal roots. These observations suggest that although changes in rhizospheric conditions were perceived by the root part of the symbiosis, the typical Cd-induced stress responses of phenolics were buffered. It is not known whether mycorrhization protected roots from Cd-induced injury by preventing access of cadmium to sensitive extra- or intracellular sites, or by excreted or intrinsic metal-chelators, or by other defence systems. It is possible that mycorrhizal fungi provide protection via GSH since higher concentrations of this thiol were found in pure cultures of the fungi than in bare roots. The development of stress-tolerant plant-mycorrhizal associations may be a promising new strategy for phytoremediation and soil amelioration measures.  (+info)

Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. (35/206)

To find evidence for a connection between heat stress response, oxidative stress, and common stress tolerance, we studied the effects of elevated growth temperatures and heat stress on the activity and expression of ascorbate peroxidase (APX). We compared wild-type Arabidopsis with transgenic plants overexpressing heat shock transcription factor 3 (HSF3), which synthesize heat shock proteins and are improved in basal thermotolerance. Following heat stress, APX activity was positively affected in transgenic plants and correlated with a new thermostable isoform, APX(S). This enzyme was present in addition to thermolabile cytosolic APX1, the prevalent isoform in unstressed cells. In HSF3-transgenic plants, APX(S) activity was detectable at normal temperature and persisted after severe heat stress at 44 degrees C. In nontransgenic plants, APX(S) was undetectable at normal temperature, but could be induced by moderate heat stress. The mRNA expression profiles of known and three new Apx genes were determined using real-time PCR. Apx1 and Apx2 genes encoding cytosolic APX were heat stress and HSF dependently expressed, but only the representations of Apx2 mRNA met the criteria that suggest identity between APX(S) and APX2: not expressed at normal temperature in wild type, strong induction by heat stress, and HSF3-dependent expression in transgenic plants. Our data suggest that Apx2 is a novel heat shock gene and that the enzymatic activity of APX2/APX(S) is required to compensate heat stress-dependent decline of APX1 activity in the cytosol. The functional roles of modulations of APX expression and the interdependence of heat stress and oxidative stress response and signaling mechanisms are discussed.  (+info)

Role of histidine 42 in ascorbate peroxidase. Kinetic analysis of the H42A and H42E variants. (36/206)

To examine the role of the distal His42 residue in the catalytic mechanism of pea cytosolic ascorbate peroxidase, two site-directed variants were prepared in which His42 was replaced with alanine (H42A) or glutamic acid (H42E). Electronic spectra of the ferric derivatives of H42A and H42E (pH 7.0, mu = 0.10 m, 25.0 degrees C) revealed wavelength maxima [lambda(max) (nm): 397, 509, approximately equal to 540(sh), 644 (H42A); 404, 516, approximately equal to 538(sh), 639 (H42E)] consistent with a predominantly five-co-ordinate high-spin iron. The specific activity of H42E for oxidation of L-ascorbate (8.2 +/- 0.3 U.mg(-1)) was approximately equal to 30-fold lower than that of the recombinant wild-type enzyme (rAPX); the H42A variant was essentially inactive but activity could be partially recovered by addition of exogenous imidazoles. The spectra of the Compound I intermediates of H42A [lambda(max) (nm) = 403, 534, 575(sh), 645] and H42E [lambda(max) (nm) = 404, 530, 573(sh), 654] were similar to those of rAPX. Pre-steady-state data for formation of Compound I for H42A and H42E were consistent with a mechanism involving accumulation of a transient enzyme intermediate (K(d)) followed by conversion of this intermediate into Compound I (k'(1)). Values for k'(1) and K(d) were, respectively, 4.3 +/- 0.2 s(-1) and 30 +/- 2.0 mM (H42A) and 28 +/- 1.0 s(-1) and 0.09 +/- 0.01 mM (H42E). Photodiode array experiments for H42A revealed wavelength maxima for this intermediate at 401 nm, 522 nm and 643 nm, consistent with the formation of a transient [H42A-H(2)O(2)] species. Rate constants for Compound I formation for H42A were independent of pH, but for rAPX and H42E were pH-dependent [pKa = 4.9 +/- 0.1 (rAPX) and pK(a) = 6.7 +/- 0.2 (H42E)]. The results provide: (a) evidence that His42 is critical for Compound I formation in APX; (b) confirmation that titration of His42 controls Compound I formation and an assignment of the pK(a) for this group; (c) mechanistic and spectroscopic evidence for an intermediate before Compound I formation; (d) evidence that a glutamic acid residue at position 42 can act as the acid-base catalyst in ascorbate peroxidase.  (+info)

Proteome analysis of grain filling and seed maturation in barley. (37/206)

In monocotyledonous plants, the process of seed development involves the deposition of reserves in the starchy endosperm and development of the embryo and aleurone layer. The final stages of seed development are accompanied by an increase in desiccation tolerance and drying out of the mature seed. We have used two-dimensional gel electrophoresis for a time-resolved study of the changes in proteins that occur during seed development in barley (Hordeum vulgare). About 1,000 low-salt extractable protein spots could be resolved on the two-dimensional gels. Protein spots were divided into six categories according to the timing of appearance or disappearance during the 5-week period of comparison. Nineteen different proteins or protein fragments in 36 selected spots were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry (MS) or nano-electrospray tandem MS/MS. Some proteins were present throughout development (for example, cytosolic malate dehydrogenase), whereas others were associated with the early grain filling (ascorbate peroxidase) or desiccation (Cor14b) stages. Most noticeably, the development process is characterized by an accumulation of low-M(r) alpha-amylase/trypsin inhibitors, serine protease inhibitors, and enzymes involved in protection against oxidative stress. We present examples of proteins not previously experimentally observed, differential extractability of thiol-bound proteins, and possible allele-specific spot variation. Our results both confirm and expand on knowledge gained from previous analyses of individual proteins involved in grain filling and maturation.  (+info)

Detection of oligonucleotide hybridization at femtomolar level and sequence-specific gene analysis of the Arabidopsis thaliana leaf extract with an ultrasensitive surface plasmon resonance spectrometer. (38/206)

A flow-injection (FI) device is combined, through the use of a low-volume (4 microl) flow cell, with an ultrasensitive surface plasmon resonance (SPR) spectrometer equipped with a bi-cell photodiode detector. The application of this novel FI-SPR device for sequence-specific ultratrace analysis of oligodeoxynucleotides (ODNs) and polydeoxynucleotides was demonstrated. Self-assembled monolayers of ODN probes are tethered onto Au films with a mercaptohexyl group at the 3' ends. The FI-SPR provides a detection level (< or =54 fM) 2-3 orders of magnitude lower than other SPR devices and compares well with several ultrasensitive detection methods for labeled DNA targets (e.g. fluorophore-tagged and radiolabeled DNA samples). The technique is also highly selective, since a 47mer ODN target with a single-base mismatch yielded a much smaller SPR signal, and a specific interaction was detected when the complementary target was present at 0.001% of the total DNA. The FI-SPR was extended to the measurement of two individual genes in a cDNA mixture transcribed from an Arabidopsis thaliana leaf mRNA pool. The greatly enhanced sensitivity not only obviates the necessity of DNA labeling, but also significantly reduces sample consumption, allowing direct quantification of low abundance mRNAs in cellular samples without amplification.  (+info)

Identification of a cis element for tissue-specific alternative splicing of chloroplast ascorbate peroxidase pre-mRNA in higher plants. (39/206)

Alternative splicing events in the 3'-terminal region of chloroplast ascorbate peroxidase (chlAPX) pre-mRNA in spinach and tobacco, which produced four types of mRNA variants, one form (tAPX-I) encoding thylakoid-bound APX (tAPX) and three forms (sAPX-I, -II, and -III) encoding stromal APX (sAPX), were regulated in a tissue-specific manner. The ratio of the level of sAPX mRNAs (sAPX-I, -II, and -III) to tAPX-I mRNA was close to 1 in leaf, whereas the ratio in root was greatly elevated due to an increase in sAPX-III and a decrease in tAPX-I resulting from the alternative excision of intron 11 and intron 12, respectively. A putative splicing regulatory cis element (SRE), which is highly conserved in the sequences of chlAPX genes of higher plants, was identified upstream of the acceptor site in intron 12. The deletion of the SRE sequence diminished the splicing efficiency of intron 12 in tobacco leaf in vivo. Gel-shift analysis showed that SRE interacts strongly with a nuclear protein from leaves but not those from the roots of spinach and tobacco. These results indicate that the tissue-specific alternative splicing of chlAPX pre-mRNA is regulated by the splicing enhancer SRE.  (+info)

Effects of low chronic doses of ionizing radiation on antioxidant enzymes and G6PDH activities in Stipa capillata (Poaceae). (40/206)

Stipa capillata (Poaceae) seeds were harvested from a control area (displaying a gamma dose rate of 0.23 micro Sv h(-1)) (C plants) and from two contaminated areas (5.4 and 25 micro Sv h(-1)) on the Semipalatinsk nuclear test site (SNTS) in Kazakhstan. The plants were grown for 124 d in a greenhouse under controlled conditions and exposed to three different treatments: (0) control; (E) external gamma irradiation delivered by a sealed 137Cs source with a dose rate of 66 micro Sv h(-1); (E+I) E treatment combined with internal beta irradiation due to contamination by 134Cs and 85Sr via root uptake from the soil. The root uptake led to a contamination of 100 Bq g(-1) for 85Sr and 5 Bq g(-1) for 134Cs (of plant dry weight) as measured at harvest. The activity of SOD, APX, GR, POD, CAT, G6PDH, and MDHAR enzymes was measured in leaves. Under (0) treatment, all enzymes showed similar activities, except POD, which had higher activity in plants originating from contaminated areas. Treatment (E) induced an enhancement of POD, CAT, GR, SOD, and G6PDH activities in plants originating from contaminated areas. Only control plants showed any stimulation of APX activity. Treatment (E+I) had no significant effect on APX, GR, CAT, and POD activities, but MDHAR activity was significantly reduced while SOD and G6PDH activities were significantly increased. The increase occurred in plants from all origins for SOD, with a greater magnitude as a function of their origin, and it occurred only in plants from the more contaminated populations for G6PDH. This suggests that exposure to a low dose rate of ionizing radiation for almost a half century in the original environment of Stipa has led to natural selection of the most adapted genotypes characterized by an efficient induction of anti-oxidant enzyme activities, especially SOD and G6PDH, involved in plant protection against reactive oxygen species.  (+info)