Identification of Epichloe endophytes in planta by a microsatellite-based PCR fingerprinting assay with automated analysis. (1/2575)

Epichloe endophytes are a group of filamentous fungi that include both sexual (Epichloe) and asexual (Neotyphodium) species. As a group they are genetically diverse and form both antagonistic and mutualistic associations with temperate grasses. We report here on the development of a microsatellite-based PCR system for fingerprinting this group of fungi with template isolated from either culture or infected plant material. M13mp19 partial genomic libraries were constructed for size-fractionated genomic DNA from two endophyte strains. These libraries were screened with a mixture of DIG-labeled dinucleotide and trinucleotide repeat probes. Positive clones were sequenced, and nine unique microsatellite loci were identified. An additional microsatellite was serendipitously identified in the 3' untranscribed region of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase gene from N. lolii Lp19. Primers were designed for each locus and a panel of endophytes, from different taxonomic groupings, was screened to determine the degree of polymorphism. On the basis of these results a multiplex assay was developed for strain identification with fluorescently labeled primers for five of these loci. Using this system the size of the products amplified can be precisely determined by automated analysis, and an allele profile for each strain can be readily generated. The assay was shown to resolve endophyte groupings to the level of known isozyme phenotype groupings. In a blind test the assay was used successfully to identify a set of endophytes in planta. A reference database of allele sizes has been established for the panel of endophytes examined, and this will be expanded as new strains are analyzed.  (+info)

Beauveriolides, specific inhibitors of lipid droplet formation in mouse macrophages, produced by Beauveria sp. FO-6979. (2/2575)

Beauveria sp. FO-6979, a soil isolate, was found to produce inhibitors of lipid droplet formation in mouse peritoneal macrophages. A new compound beauveriolide III was isolated along with a known compound beauveriolide I from the fermentation broth of the producing strain by solvent extraction, ODS column chromatography, silica gel column chromatography and preparative HPLC. Beauveriolides I and III caused a reduction in the number and size of cytosolic lipid droplets in macrophages at 10 microM without any cytotoxic effect on macrophages.  (+info)

Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. (3/2575)

The vacuolar ATPase subunit A structural gene VMA1 of the biotechnologically important riboflavin overproducer Ashbya gossypii was cloned and disrupted to prevent riboflavin retention in the vacuolar compartment and to redirect the riboflavin flux into the medium. Cloning was achieved by polymerase chain reaction using oligonucleotide primers derived form conserved sequences of the Vma1 proteins from yeast and filamentous fungi. The deduced polypeptide comprises 617 amino acids with a calculated molecular mass of 67.8 kDa. The deduced amino acid sequence is highly similar to that of the catalytic subunits of Saccharomyces cerevisiae (67 kDa), Candida tropicalis (67 kDa), and Neurospora crassa (67 kDa) with 89, 87, and 60% identity, respectively, and shows about 25% identity to the beta-subunit of the FoF1-ATPase of S. cerevisiae and Schizosaccharomyces pombe. In contrast to S. cerevisiae, however, where disruption of the VMA1 gene was conditionally lethal, and to N. crassa, where viable disruptants could not be isolated, disruption of the VMA1 gene in A. gossypii did not cause a lethal phenotype. Disruption of the AgVMA1 gene led to complete excretion of riboflavin into the medium instead of retention in the vacuolar compartment, as observed in the wild type.  (+info)

Properties of a subtilisin-like proteinase from a psychrotrophic Vibrio species comparison with proteinase K and aqualysin I. (4/2575)

An extracellular serine proteinase purified from cultures of a psychrotrophic Vibrio species (strain PA-44) belongs to the proteinase K family of the superfamily of subtilisin-like proteinases. The enzyme is secreted as a 47-kDa protein, but under mild heat treatment (30 min at 40 degrees C) undergoes autoproteolytic cleavage on the carboxyl-side of the molecule to give a proteinase with a molecular mass of about 36 kDa that apparently shares most of the enzymatic characteristics and the stability of the 47-kDa protein. In this study, selected enzymatic properties of the Vibrio proteinase were compared with those of the related proteinases, proteinase K and aqualysin I, as representative mesophilic and thermophilic enzymes, respectively. The catalytic efficiency (kcat/Km) for the amidase activity of the cold-adapted enzyme against succinyl-AAPF-p-nitroanilide was significantly higher than that of its mesophilic and thermophilic counterparts, especially when compared with aqualysin I. The stability of the Vibrio proteinase, both towards heat and denaturants, was found to be significantly lower than of either proteinase K or aqualysin I. One or more disulfide bonds in the psychrotrophic proteinase are important for the integrity of the active enzyme structure, as disulfide cleavage, either by reduction with dithiothreitol or by sulfitolysis, led to a loss in its activity. Under the same conditions, aqualysin I was also partially inactivated by dithiothreitol, but the activity of proteinase K was unaffected. The disulfides of either proteinase K or aqualysin I were not reactive towards sulfitolysis, except under denaturing conditions, while all disulfides of the Vibrio proteinase reacted in absence of a denaturant. The reactivity of the disulfides of the proteins as a function of denaturant concentration followed the order: Vibrio proteinase > proteinase K > aqualysin I. The same order of reactivity was also observed for the inactivation of the enzymes by H2O2-oxidation, as a function of temperature. The order of reactivity observed in these reactions most likely reflects the accessibility of the reactive cystine or methionine side chains present in the three related proteinases, and hence a difference in the compactness of their protein structures.  (+info)

A function for the plasmalemma grooves of a fission yeast. (5/2575)

Ultrastructural studies on regenerating protoplasts of Schizosaccharomyces pombe show that the spatial differentiation of the plasmalemma into grooves and flat areas is reflected in a functional differentiation in cell-wall synthesis. The grooves are the initial site of production of wall fibrils.  (+info)

The phenoloxidases of the ascomycete Podospora anserina. Structural differences between laccases of high and low molecular weight. (6/2575)

In order to investigate the extent of the relationship between the three copper-containing glycoproteins, laccases I, II and III (Mr70000, 80000 and 390000 respectively) of Podospora anserina, the following experiments were carried out on laccases II and III: (a) determination of amino acid composition; (b) determination of N-terminal and C-terminal amino acid; (c) determination of sugar composition; (d) dissociation studies on native and denatured laccases and also after removal of copper from the enzymes; (e) digestion of the carbohydrate moieties with the aid of glycosylhydrolases. A comparison between the results of these experiments and data previously obtained with laccase I allows the following conclusions to be drawn. 1. Laccases II and III are not identical. 2. Neither of these low molecular weight laccases are as complete molecules subunits of the oligomeric laccase I. 3. The possibility of partial identity of amino acid sequences of laccases I and III can not be excluded. 4. Laccase II possibly consists of subunits of Mr37000 whereas laccase III does not. 5. Digestion of 50% of the carbohydrate content leads to complete loss of serological specificity (serological reaction and cross reaction). This finding is discussed with regard to the possible role of the carbohydrate moiety as antigenic determinants and thus as the reason for the immunological relationship. As a consequence, at least three independent structural genes for laccases must be assumed.  (+info)

Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. (7/2575)

Insulin elicits a spectrum of biological responses by binding to its cell surface receptor. In a screen for small molecules that activate the human insulin receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was identified that acted as an insulin mimetic in several biochemical and cellular assays. The compound was selective for insulin receptor versus insulin-like growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral administration of L-783,281 to two mouse models of diabetes resulted in significant lowering in blood glucose levels. These results demonstrate the feasibility of discovering novel insulin receptor activators that may lead to new therapies for diabetes.  (+info)

Multiple mitochondrial viruses in an isolate of the Dutch Elm disease fungus Ophiostoma novo-ulmi. (8/2575)

The nucleotide sequences of three mitochondrial virus double-stranded (ds) RNAs, RNA-4 (2599 nucleotides), RNA-5 (2474 nucleotides), and RNA-6 (2343 nucleotides), in a diseased isolate Log1/3-8d2 (Ld) of the Dutch elm disease fungus Ophiostoma novo-ulmi have been determined. All these RNAs are A-U-rich (71-73% A + U residues). Using the fungal mitochondrial genetic code in which UGA codes for tryptophan, the positive-strand of each of RNAs 4, 5, and 6 contains a single open reading frame (ORF) with the potential to encode a protein of 783, 729, and 695 amino acids, respectively, all of which contain conserved motifs characteristic of RNA-dependent RNA polymerases (RdRps). Sequence comparisons showed that these RNAs are related to each other and to a previously characterized RNA, RNA-3a, from the same O. novo-ulmi isolate, especially within the RdRp-like motifs. However, the overall RNA nucleotide and RdRp amino acid sequence identities were relatively low (43-55% and 20-32%, respectively). The 5'- and 3'-terminal sequences of these RNAs are different, but they can all be folded into potentially stable stem-loop structures. Those of RNA-4 and RNA-6 have inverted complementarity, potentially forming panhandle structures. Their molecular and biological properties indicate that RNAs 3a, 4, 5, and 6 are the genomes of four different viruses, which replicate independently in the same cell. These four viruses are also related to a mitochondrial RNA virus from another fungus, Cryphonectria parasitica, recently designated the type species of the Mitovirus genus of the Narnaviridae family, and to a virus from the fungus Rhizoctonia solani. It is proposed that the four O. novo-ulmi mitochondrial viruses are assigned to the Mitovirus genus and designated O. novo-ulmi mitovirus (OnuMV) 3a-Ld, 4-Ld, 5-Ld, and 6-Ld, respectively. Northern blot analysis indicated that O. novo-ulmi Ld nucleic acid extracts contain more single-stranded (ss, positive-stranded) RNA than dsRNA for all three newly described mitoviruses. O. novo-ulmi RNA-7, previously believed to be a satellite-like RNA, is shown to be a defective RNA, derived from OnuMV4-Ld RNA by multiple internal deletions. OnuMV4-Ld is therefore the helper virus for the replication of both RNA-7 and another defective RNA, RNA-10. Sequence comparisons indicate that RNA-10 could be derived from RNA-7, as previously suggested, or derived directly from RNA-4.  (+info)