Chronic inhalation study of fiber glass and amosite asbestos in hamsters: twelve-month preliminary results. (65/70)

The effects of chronic inhalation of glass fibers and amosite asbestos are currently under study in hamsters. The study includes 18 months of inhalation exposure followed by lifetime recovery. Syrian golden hamsters are exposed, nose only, for 6 hr/day, 5 day/week to size-selected test fibers: MMVF10a (Schuller 901 insulation glass); MMVF33 (Schuller 475 durable glass); amosite asbestos (three doses); or to filtered air (controls). Here we report interim results on airborne fiber characterization, lung fiber burden, and pathology (preliminary) through 12 months. Aerosolized test fibers averaged 15 to 20 microns in length and 0.5 to 1 micron in diameter. Target aerosol concentrations of World Health Organization (WHO) fibers (longer than 5 microns) were 250 fibers/cc for MMVF10a and MMVF33, and 25, 125, or 250 fibers/cc for amosite. WHO fiber lung burdens showed time-dependent and (for amosite) dose-dependent increases. After a 12-month exposure, lung burdens of fibers longer than 20 microns were greatest with amosite high and mid doses, similar for low-dose amosite and MMVF33, and smaller for MMVF10a. Biological responses of animals exposed for 12 months to MMVF10a were limited to nonspecific pulmonary inflammation. However, exposures to MMVF33 and each of three doses of amosite were associated with lung fibrosis and possible mesotheliomas (1 with MMVF33 and 2, 3, and 1 with amosite low, mid, and high doses, respectively). Pulmonary and pleural changes associated with amosite were qualitatively and quantitatively more severe than those associated with MMVF33. As of the 12-month time point, this study demonstrates that two different fiber glass compositions with similar fiber dimensions but different durabilities can have distinctly different effects on the hamster lung and pleura after inhalation exposure. (Preliminary tumor data through 18 months of exposure and 6 weeks of postexposure recovery became available as this manuscript went to press: No tumors were observed in the control or MMVF10a groups, and no additional tumors were observed in the MMVF33 group; however, a number of additional mesotheliomas were observed in the amosite groups.  (+info)

Short-term inhalation and in vitro tests as predictors of fiber pathogenicity. (66/70)

A wide range of fiber types was tested in two in vitro assays: toxicity to A549 epithelial cells, as detachment from substrate, and the production of the proinflammatory cytokine tumor necrosis factor (TNF) by rat alveolar macrophages. Three of the fibers were also studied in vivo, using short-term inhalation followed by a) bronchoalveolar lavage to assess the inflammatory response and b) measurement of cell proliferation in terminal bronchioles and alveolar ducts, using incorporation of bromodeoxyuridine (BrdU). The amount of TNF produced by macrophages in vitro depended on the fiber type, with the man-made vitreous fibers, and refractory ceramic fibers being least stimulatory and silicon carbide (SiC) whiskers providing the greatest stimulation. In the epithelial detachment assay there were dose-dependent differences in the toxicity of the various fibers, with long amosite being the most toxic. However, there was no clear relationship to known chronic pathogenicity. Fibers studied by short-term inhalation produced some inflammation, but there was no clear discrimination between the responses to code 100/475 glass fibers and the more pathogenic amosite and SiC. However, measurements of BrdU uptake into lung cells showed that amosite and SiC produced a greater reaction than code 100/475, which itself caused no more proliferation than that seen in untreated lungs. These results mirror the pathogenicity ranking of the fibers in long-term experiments. In conclusion, the only test to show potential as a predictive measure of pathogenicity was that of cell proliferation in lungs after brief inhalation exposure (BrdU assay). We believe that this assay should be validated with a wider range of fibers, doses, and time points.  (+info)

Involvement of protein kinase C, phospholipase C, and protein tyrosine kinase pathways in oxygen radical generation by asbestos-stimulated alveolar macrophage. (67/70)

Although asbestos stimulates oxygen radical generation in alveolar macrophages, the exact mechanism is still not clear. The purpose of this study was to compare the ability of three asbestos fibers (amosite, chrysotile, and crocidolite) to generate oxygen radicals in macrophages and examine the mechanism of this action. All asbestos fibers were able to induce chemiluminescence but chrysotile induced maximal chemiluminescence at higher concentrations than amosite and crocidolite. Protein kinase C (PKC) inhibitors (sphingosine and staurosporine) suppressed the ability of asbestos to induce oxygen radical generation. Phospholipase C (PLC) inhibitors (U73122 and neomycin) and protein tyrosine kinase (PTK) inhibitors (erbstatin and genistein) decreased oxygen radical generation of asbestos-stimulated alveolar macrophages. Oxygen radical generation was not suppressed by an adenylate cyclase activator (forskolin), a protein kinase A inhibitor (H-8), and a protein serine-threonine phosphatase inhibitor (okadaic acid). PLC and PTK inhibitors suppressed the increment of phosphoinositide turnover by amosite. These results suggest that asbestos fibers induce the generation of oxygen radicals through PTK, PLC, and PKC pathways in a dose-response pattern.  (+info)

Tyler asbestos workers: mortality experience in a cohort exposed to amosite. (68/70)

OBJECTIVES: To examine the causes of death among 1130 former workers of a plant in Tyler, Texas dedicated to the manufacture of asbestos pipe insulation materials. This cohort is important and unusual because it used amosite as the only asbestiform mineral in the production process. High level exposure of such a specific type was documented through industrial hygiene surveys in the plant. METHODS: Deaths were ascertained through various sources including data tapes from the Texas Department of Health and the national death index files. As many death certificates as possible were secured (304/315) and cause of death assigned. After select exclusions, 222 death certificates were used in the analysis. Causes of death were compared with age, race, and sex specific mortalities for the United States population with a commercial software package (OCMAP Version 2.0). RESULTS: There was an excess of deaths from respiratory cancer including the bronchus, trachea, and lung (standardised mortality ratio (SMR) 277 with 95% confidence interval (95% CI) 193 to 385). Four pleural mesotheliomas and two peritoneal mesotheliomas were identified. The analysis also showed an increasing risk of respiratory malignancy with increased duration of exposure including a significant excess of total deaths from respiratory cancer with less than six months of work at the plant (SMR 268 with 95% CI 172 to 399). CONCLUSIONS: The importance of the cohort lies with the pure amosite exposure which took place in the plant and the extended period of latency which has followed. The death certificate analysis indicates the pathogenicity of amosite, the predominant commercial amphibole used in the United States. These data confirm a link between amosite asbestos and respiratory malignancy as well as mesothelioma.  (+info)

Asbestos-induced lung epithelial permeability: potential role of nonoxidant pathways. (69/70)

Asbestos fibers are an important cause of lung fibrosis; however, the biological mechanisms are incompletely understood. The lung epithelium serves an important barrier function in the lung, and disrupting the epithelial barrier can contribute to lung fibrosis. Lung epithelial permeability is increased in patients with asbestosis, and asbestos fibers increase permeability across cultured human lung epithelium. However, the mechanism of this increased permeability is not known. Many of the biological effects of asbestos are postulated to be due to its ability to generate oxidants, and oxidants are known to increase epithelial permeability. However, we previously reported that altering the iron content of asbestos (important in oxidant generation) had no effect on its ability to increase permeability. For that reason, we undertook these studies to determine whether asbestos increases epithelial permeability through nonoxidant pathways. Both extracellular (H2O2) and intracellular (menadione) oxidants increase paracellular permeability across human lung epithelial monolayers. Extracellular catalase but not superoxide dismutase prevented increased permeability after both oxidant exposures. However, catalase offered no protection from asbestos-induced permeability. We next depleted the cells of glutathione or catalase to determine whether depleting normal cellular antioxidants would increase the sensitivity to asbestos. Permeability was the same in control cells and in cells depleted of these antioxidants. In addition to generating oxidants, asbestos also activates signal transduction pathways. Blocking protein kinase C activation did not prevent asbestos-induced permeability; however, blocking tyrosine kinase with tyrophostin A25 did prevent asbestos-induced permeability, and blocking tyrosine phosphatase with sodium vanadate enhanced the effect of asbestos. These data demonstrate that asbestos may increase epithelial permeability through nonoxidant pathways that involve tyrosine kinase activation. This model offers an important system for studying pathways involved in regulating lung epithelial permeability.  (+info)

Cigarette smoke increases amosite asbestos fiber binding to the surface of tracheal epithelial cells. (70/70)

Binding of asbestos fibers to the cell surface appears to be important in the initiation of intracellular signaling events as well as in initiation of particle uptake by the cell. We have previously shown that cigarette smoke increases the uptake of asbestos fibers by tracheal epithelial cells in explant culture. Whether smoke acts by increasing surface binding of fibers is not known. In this study, we exposed rat tracheal explants to air or cigarette smoke and then to a suspension of amosite asbestos. Explants were harvested after 1 or 24 h of dust exposure and washed by repeated dips in culture medium to remove loosely bound fibers, and the number of fibers adhering to the apical cell surfaces was determined by scanning electron microscopy. Smoke-exposed explants retained significantly more surface fibers than air-exposed explants. After four washes, binding levels were similar at 1 and 24 h. The smoke effect was still present when incubations were carried out at 4 degrees C, but binding was decreased approximately 25%. Preincubation of the asbestos fibers with iron chloride to increase surface iron increased fiber binding in both air- and smoke-exposed explants, whereas preincubation of the fibers with the iron chelator deferoxamine decreased binding after air exposure and completely eliminated the smoke effect. Inclusion of mannitol or catalase in the medium or preincubation of the explants with GSH produced decreases in binding of 10-25% in air-exposed explants and generally greater decreases in smoke-exposed explants. We conclude that 1) amosite binding is a very rapid process that does not require active cellular metabolism, 2) cigarette smoke increases adhesion of fibers to the epithelial surfaces, and 3) iron on the asbestos fiber appears to play an important role in binding, probably through an active oxygen species-mediated process.  (+info)