Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1 in the Egyptian population. (33/185)

AIMS: The goal of this study was to determine the frequencies of important allelic variants in the TPMT, NAT2, GST, SULT1A1 and MDR-1 genes in the Egyptian population and compare them with the frequencies in other ethnic populations. METHODS: Genotyping was carried out in a total of 200 unrelated Egyptian subjects. TPMT*2 was detected using an allele-specific polymerase chain reaction (PCR) assay. TPMT*3C and NAT2 variants (*5,*6 and *7) were detected using an allele-specific real-time PCR assay. Detection of GSTM1 and GSTT1 null alleles was performed simultaneously using a multiplex PCR assay. Finally, a PCR-restriction fragment length polymorphism assay was applied for the determination of TPMT*3A (*3B), SULT1A1*2 and MDR-1 (3435T) variants. RESULTS: Genotyping of TPMT revealed frequencies of 0.003 and 0.013 for TPMT*3A and TPMT*3C, respectively. No TPMT*2 or *3B was detected in the analysed samples. The frequencies of specific NAT2 alleles were 0.215, 0.497, 0.260 and 0.028 for *4 (wild-type), *5 (341C), *6 (590A) and *7 (857A), respectively. GSTM1 and GSTT1 null alleles were detected in 55.5% and 29.5% of the subjects, respectively. SULT1A1*2 was detected at a frequency of 0.135. Finally, the frequencies of the wild-type allele (3435C) and the 3435T variant in the MDR-1 gene were found to be 0.6 and 0.4, respectively. CONCLUSIONS: We found that Egyptians resemble other Caucasians with regard to allelic frequencies of the tested variants of NAT2, GST and MDR-1. By contrast, this Egyptian population more closely resemble Africans with respect to the TPMT*3C allele, and shows a distinctly different frequency with regard to the SULT1A1*2 variant. The predominance of the slow acetylator genotype in the present study (60.50%) could not confirm a previously reported higher frequency of the slow acetylator phenotype in Egyptians (92.00%), indicating the possibility of the presence of other mutations not detectable as T341C, G590A and G857A. The purpose of our future studies is to investigate for new polymorphisms, which could be relatively unique to the Egyptian population.  (+info)

Arginine residues in the active site of human phenol sulfotransferase (SULT1A1). (34/185)

Cytosolic sulfotransferases (STs) catalyze the sulfation of hydroxyl containing compounds. Human phenol sulfotransferase (SULT1A1) is the major human ST that catalyzes the sulfation of simple phenols. Because of its broad substrate specificity and lack of endogenous substrates, the biological function of SULT1A1 is believed to be an important detoxification enzyme. In this report, amino acid modification, computer structure modeling, and site-directed mutagenesis were used for studies of Arg residues in the active site of SULT1A1. The Arg-specific modification reagent, 2,3-butanedione, inactivated SULT1A1 in an efficient, time- and concentration-dependent manner, suggesting Arg residues play an important role in the catalytic activity of SULT1A1. According to the computer model, Arg78, Arg130, and Arg257 may be important for SULT1A1 catalytic activity. Site-directed mutagenesis results demonstrated that the positive charge on Arg78 is not critical for SULT1A1 because R78A is still active. In contrast, a negative charge at this position, R78E, completely inactivated SULT1A1. Arg78 is in close proximity to the site of sulfuryl group transfer. Arg257 is located very close to the 3'-phosphate in adenosine 3'-phosphate 5'-phosphosulfate (PAPS). Site-directed mutagenesis demonstrated that Arg257 is critical for SULT1A1: both R257A and R257E are inactive. Although Arg130 is also located very close to the 3'-phosphate of PAPS, R130A and R130E are still active, suggesting that Arg130 is not a critical residue for the catalytic activity of SULT1A1. Computer modeling suggests that the ionic interaction between the positive charge on Arg257, and the negative charge on 3'-phosphate is the primary force stabilizing the specific binding of PAPS.  (+info)

Interindividual variability of phenol- and catechol-sulphotransferases in platelets from adults and newborns. (35/185)

1 Phenol- and catechol- sulphotransferase activities were measured with p-nitrophenol and dopamine as substrates in platelets obtained from 100 newborns and 100 healthy adults. 2 Mean +/- (s.d.) estimates of catechol sulphotransferase activity were 7.07 +/- 5.93 (adult) and 13.3 +/- 6.42 (newborn) pmol min(-1) mg(-1) protein, respectively (P < 0.001). The coefficients of variation were 84% (adult) and 48% (newborn). The frequency distribution of sulphotransferase activity was symmetric and did not deviate significantly from normality in newborn platelets, but was positively skewed in adult platelets. 3 Mean +/- (s.d.) estimates of phenol sulphotransferase activity were 3.01 +/- 3.21 (adult) and 4.80 +/- 4.34 (newborn) pmol min(-1) mg(-1), respectively (P < 0.001). The coefficients of variation were 107% (adult) and 90% (newborn). The frequency distribution of sulphotransferase activity was positively skewed in both newborn and adult platelets. 4 Since sulphotransferase activity in platelets is well-expressed at birth and a prenatal development of sulphotransferase has been described in mid-gestational human foetal liver, the newborn should be able to sulphate drugs.  (+info)

Solvent effect on cDNA-expressed human sulfotransferase (SULT) activities in vitro. (36/185)

Sulfation is an important reaction in the biotransformation of steroid hormones, neurotransmitters, drugs, and other xenobiotics, yet little is known about the effects of organic solvents on sulfotransferase (SULT) activities in vitro. Initial experiments found that surprisingly low levels of solvent had dramatic effects on sulfotransferase activity. Consequently, we evaluated the effects of five commonly used solvents (methanol, ethanol, acetonitrile, dimethyl sulfoxide, and dimethyl formamide) on activities of cDNA-expressed sulfotransferase isozymes 1A1 (4-nitrophenol sulfation), 1A3 (dopamine sulfation), 1E1 (ethynylestradiol sulfation), and 2A1 (dehydroepiandrosterone sulfation). In addition, 1-hydroxypyrene was used as a general fluorescent probe for all four sulfotransferase isoforms examined. When substrates were present at their respective isoform-specific Km values, methanol and ethanol (0.4%, v/v) generally had less effect than acetonitrile, dimethyl sulfoxide, and dimethyl formamide on sulfotransferase activities. Acetonitrile, a commonly used solvent in cytochrome P450 studies, inhibited SULT1A1 activities (approximately 40%) at 0.4% (v/v), but activated SULT1E1-mediated 1-hydroxypyrene sulfation approximately 2.6-fold. Assuming a two-site kinetic model, studies revealed that solvent affected Vmax1, Vmax2, and the Ki value of 1-hydroxypyrene sulfation mediated by SULT1E1. In contrast, the Km value was not affected, suggesting that solvent may potentially alter binding interactions of the second substrate molecule, but not the first. Additional experiments with expressed SULT1A1, supplemented with control protein, revealed that the inhibitory effect of solvent (0.4%, v/v) was reduced to <15% for all solvents examined. Thus, it is recommended that ethanol is used as the preferred solvent vehicle and that incubations with expressed enzyme contain >12 microg/ml total protein.  (+info)

Transactivation of glucocorticoid-inducible rat aryl sulfotransferase (SULT1A1) gene transcription. (37/185)

The purpose of the current study was to establish the role of the glucocorticoid receptor (GR) and androgen receptor (AR) transcription factors in the transactivation of rat aryl sulfotransferase (SULT1A1) gene transcription and to identify the functional hormone-responsive element(s) in the SULT1A1 gene. A cis-acting inverted repeat with three intervening bases (IR3) was identified in the 5'-flanking of the SULT1A1 gene that mediates the transactivation of SULT1A1 gene transcription by both the GR and AR. CV-1 cells were cotransfected with SULT1A1-luciferase reporter plasmids and either wild-type or mutant GR or AR expression constructs. In cotransfectants expressing the wild-type GR, treatment with triamcinolone acetonide produced an approximately 4- to 6-fold induction of luciferase activity in IR3-containing SULT1A1 reporter plasmids. IR3-containing SULT1A1 reporter constructs were also activated by treatment with the synthetic androgen R1881 in cells cotransfected with wild-type but not mutant AR. In primary cultured rat hepatocytes, androgen-inducible expression of IR3-containing SULT1A1 reporter plasmids required cotransfection with AR expression plasmid. Targeted disruption of the SULT1A1 IR3 by mutation of a conserved GT sequence in the 3' half-site of the element ablated GR and AR responsiveness. These results indicate that a proximal IR3 element in the 5'-flanking region of the rat SULT1A1 gene is sufficient for the transactivation of SULT1A1 gene transcription by the GR and AR, and that relative to the GR, functional AR activity is reduced in primary cultured rat hepatocytes.  (+info)

Bioactivation of the heterocyclic aromatic amine 2-amino-3-methyl-9H-pyrido [2,3-b]indole (MeAalphaC) in recombinant test systems expressing human xenobiotic-metabolizing enzymes. (38/185)

2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeAalphaC) and some metabolites were investigated for mutagenicity in mammalian cell lines and bacterial strains engineered for the expression of human enzymes. MeAalphaC induced gene mutations (studied at the hprt locus) in Chinese hamster V79-derived cells co-expressing cytochrome (CYP) 1A2 and sulphotransferase (SULT) 1A1 even at a concentration of 30 nM, but was inactive in cells co-expressing CYP1A2 and N-acetyltransferase (NAT) 1 or 2. MeAalphaC, tested in the presence of rat liver post-mitochondrial fraction, showed strongly enhanced mutagenicity in a Salmonella typhimurium strain expressing human SULT1A1 compared with the control (recipient) strain TA1538/1,8-DNP (deficient in endogenous acetyltransferase). Mutagenicity was also enhanced, although to a lesser extent, when NAT2 was expressed in the latter strain. The metabolite, 2-hydroxylamino-3-methyl-9H-pyrido[2,3-b]indole (N-OH-MeAalphaC) was a direct mutagen to strains TA1538 and TA1538/ 1,8-DNP. This mutagenicity was strongly enhanced in corresponding strains expressing SULT1A1. A moderate enhancement was observed when SULT1A2, SULT1B1, SULT1C2 or NAT2 were expressed in strain TA1538. The remaining enzymes studied (SULT1A3, 1C1, 1E1, 2A1, 2B1a, 2B1b, 4A1 and NAT1) did not indicate any activation of N-OH-MeAalphaC. Preliminary mutagenicity experiments in SULT-expressing S.typhimurium strains were conducted with other hydroxylated metabolites of MeAalphaC. The phenols, 6- and 7-hydroxy-MeAalphaC, were inactive under the conditions studied. The benzylic alcohol, 2-amino-3-hydroxymethyl-9H-pyrido[2,3-b]indole, was mutagenic in a strain expressing SULT1A1, but its activity was much weaker than that of N-OH-MeAalphaC. Thus, N-hydroxylation (e.g. mediated by CYP1A2) and sulpho conjugation (primarily mediated by SULT1A1) was the dominating activation pathway of MeAalphaC in model systems engineered for human enzymes. Some other SULT forms as well as NAT2 were also capable of activating N-OH-MeAalphaC, although with much lower efficiency than SULT1A1. Another minor activation pathway involved benzylic hydroxylation followed by sulpho conjugation by SULT1A1.  (+info)

A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. (39/185)

Cytosolic sulfotransferase (SULT)-mediated sulfation plays an essential role in the detoxification of bile acids and is necessary to avoid pathological conditions, such as cholestasis, liver damage, and colon cancer. In this study, using transgenic mice bearing conditional expression of the activated constitutive androstane receptor (CAR), we demonstrate that activation of CAR is both necessary and sufficient to confer resistance to the hepatotoxicity of lithocholic acid (LCA). Surprisingly, the CAR-mediated protection is not attributable to the expected and previously characterized CYP3A pathway; rather, it is associated with a robust induction of SULT gene expression and increased LCA sulfation. We have also provided direct evidence that CAR regulates SULT expression by binding to the CAR response elements found within the SULT gene promoters. Interestingly, activation of CAR was also associated with an increased expression of the 3'-phosphoadenosine 5'-phosphosulfate synthetase 2 (PAPSS2), an enzyme responsible for generating the sulfate donor 3'-phosphoadenosine-5'-phosphosulfate. Analysis of gene knockout mice revealed that CAR is also indispensable for ligand-dependent activation of SULT and PAPSS2 in vivo. Therefore, we establish an essential and unique role of CAR in controlling the mammalian sulfation system and its implication in the detoxification of bile acids.  (+info)

Active site mutations and substrate inhibition in human sulfotransferase 1A1 and 1A3. (40/185)

Human SULT1A1 is primarily responsible for sulfonation of xenobiotics, including the activation of promutagens, and it has been implicated in several forms of cancer. Human SULT1A3 has been shown to be the major sulfotransferase that sulfonates dopamine. These two enzymes shares 93% amino acid sequence identity and have distinct but overlapping substrate preferences. The resolution of the crystal structures of these two enzymes has enabled us to elucidate the mechanisms controlling their substrate preferences and inhibition. The presence of two p-nitrophenol (pNP) molecules in the crystal structure of SULT1A1 was postulated to explain cooperativity at low and inhibition at high substrate concentrations, respectively. In SULT1A1, substrate inhibition occurs with pNP as the substrate but not with dopamine. For SULT1A3, substrate inhibition is found for dopamine but not with pNP. We investigated how substrate inhibition occurs in these two enzymes using molecular modeling, site-directed mutagenesis, and kinetic analysis. The results show that residue Phe-247 of SULT1A1, which interacts with both p-nitrophenol molecules in the active site, is important for substrate inhibition. Mutation of phenylalanine to leucine at this position in SULT1A1 results in substrate inhibition by dopamine. We also propose, based on modeling and kinetic studies, that substrate inhibition by dopamine in SULT1A3 is caused by binding of two dopamine molecules in the active site.  (+info)