Enzymatic and immunological characterization of the Mycobacterium fortuitum complex. (1/249)

The arylsulfatase isozymes of Mycobacterium fortuitum, M. peregrinum, M. chelonei subsp. chelonei, and M. chelonei subsp. abscessus were examined to determine the isozymal and immunological relationship among the members of the M. fortuitum complex. Cell extracts were subjected to electrophoresis on agarose and polyacrylamide gel, and arylsulfatase activity was localized using beta-naphthyl sulfate as substrate. Unique zymograms were produced for M. fortuitum, M. peregrinum, and M. chelonei which were characteristic for each species. The immunological relationship among the sulfatases was assayed by using immunodiffusion and immunoelectrophoresis followed by sulfatase staining for the enzyme. One of the isozymes of M. fortuitum and M. peregrinum cross-reacted, showing immunological identity. Antisera to sulfatases of M. fortuitum and M. peregrinum did not react with sulfatases of M. chelonei. The characterization of sulfatase isozymes in extracts of organisms in the M. fortuitum complex suggests the division of the M. fortuitum complex into two species, M. fortuitum and M. chelonei, with subspecies designations.  (+info)

Induction of selected lipid metabolic enzymes and differentiation-linked structural proteins by air exposure in fetal rat skin explants. (2/249)

The epidermal permeability barrier of premature infants matures rapidly following birth. Previous studies suggest that air exposure could contribute to this acceleration, because: (i) development of a structurally and functionally mature barrier accelerates when fetal rat skin explants are incubated at an air-medium interface, and (ii) occlusion with a water-impermeable membrane prevents this acceleration. To investigate further the effects of air exposure on epidermal barrier ontogenesis, we compared the activities of several key enzymes of lipid metabolism and gene expression of protein markers of epidermal differentiation in fetal rat skin explants grown immersed versus air exposed. The rate-limiting enzymes of cholesterol (HMG CoA reductase) and ceramide (serine palmitoyl transferase) synthesis were not affected. In contrast, the normal developmental increases in activities of glucosylceramide synthase and cholesterol sulfotransferase, responsible for the synthesis of glucosylceramides and cholesterol sulfate, respectively, were accelerated further by air exposure. Additionally, two enzymes required for the final stages of barrier maturation and essential for normal stratum corneum function, beta-glucocerebrosidase, which converts glucosylceramide to ceramide, and steroid sulfatase, which desulfates cholesterol sulfate, also increased with air exposure. Furthermore, filaggrin and loricrin mRNA levels, and filaggrin, loricrin, and involucrin protein levels all increased with air exposure. Finally, occlusion with a water-impermeable membrane prevented both the air-exposure-induced increase in lipid enzyme activity, and the expression of loricrin, filaggrin, and involucrin. Thus, air exposure stimulates selected lipid metabolic enzymes and the gene expression of key structural proteins in fetal epidermis, providing a biochemical basis for air-induced acceleration of permeability barrier maturation in premature infants.  (+info)

HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo. (3/249)

The mechanism of micromere specification is one of the central issues in sea urchin development. In this study we have identified a sea urchin homologue of ets 1 + 2. HpEts, which is maternally expressed ubiquitously during the cleavage stage and which expression becomes restricted to the skeletogenic primary mesenchyme cells (PMC) after the hatching blastula stage. The overexpression of HpEts by mRNA injection into fertilized eggs alters the cell fate of non-PMC to migratory PMC. HpEts induces the expression of a PMC-specific spicule matrix protein, SM50, but suppresses of aboral ectoderm-specific arylsulfatase and endoderm-specific HpEndo16. The overexpression of dominant negative delta HpEts which lacks the N terminal domain, in contrast, specifically represses SM50 expression and development of the spicule. In the upstream region of the SM50 gene there exists an ets binding site that functions as a positive cis-regulatory element. The results suggest that HpEts plays a key role in the differentiation of PMCs in sea urchin embryogenesis.  (+info)

An Asn > Lys substitution in saposin B involving a conserved amino acidic residue and leading to the loss of the single N-glycosylation site in a patient with metachromatic leukodystrophy and normal arylsulphatase A activity. (4/249)

Sphingolipid activator proteins are small glycoproteins required for the degradation of sphingolipids by specific lysosomal hydrolases. Four of them, called saposins, are encoded by the prosaposin gene, the product of which is proteolytically cleaved into the four mature saposin proteins (saposins A, B, C, D). One of these, saposin B, is necessary in the hydrolysis of sulphatide by arylsulphatase A where it presents the solubilised substrate to the enzyme. As an alternative to arylsulphatase A deficiency, deficiency of saposin B causes metachromatic leukodystrophy. We identified a previously undescribed mutation (N215K) in the prosaposin gene of a patient with metachromatic leukodystrophy but with normal arylsulphatase A activity and elevated sulphatide in urine. The mutation involves a highly conserved amino acidic residue and abolishes the only N-glycosylation site of saposin B.  (+info)

Induction of coproporphyrinogen oxidase in Chlamydomonas chloroplasts occurs via transcriptional regulation of Cpx1 mediated by copper response elements and increased translation from a copper deficiency-specific form of the transcript. (5/249)

Coproporphyrinogen III oxidase, encoded by a single nuclear gene in Chlamydomonas reinhardtii, produces three distinct transcripts. One of these transcripts is greatly induced in copper-deficient cells by transcriptional activation, whereas the other forms are copper-insensitive. The induced form of the transcript was expressed coordinately with the cytochrome c6-encoding (Cyc6) gene, which is known to be transcriptionally regulated in copper-deficient cells. The sequence GTAC, which forms the core of a copper response element associated with the Cyc6 gene, is also essential for induction of the Cpx1 gene, suggesting that both are targets of the same signal transduction pathway. The constitutive and induced Cpx1 transcripts have the same half-lives in vivo, and all encode the same polypeptide with a chloroplast-targeting transit sequence, but the shortest one representing the induced form is a 2-4-fold better template for translation than are either of the constitutive forms. The enzyme remains localized to a soluble compartment in the chloroplast even in induced cells, and its abundance is not affected when the tetrapyrrole pathway is manipulated either genetically or by gabaculine treatment.  (+info)

A novel mucin-sulphatase activity found in Burkholderia cepacia and Pseudomonas aeruginosa. (6/249)

Lung infections due to Burkholderia cepacia and Pseudomonas aeruginosa in patients with cystic fibrosis (CF) are common, are associated with respiratory morbidity and are a cause of mortality. Respiratory mucin in CF patients is highly sulphated, which increases its resistance to bacterial degradation. Desulphation increases the susceptibility of mucin to degradation by bacterial glycosidases and proteinases, and subsequent deglycosylation may facilitate bacterial colonisation by increasing available substrates and binding sites. This study determined whether clinical and environmental strains of B. cepacia and P. aeruginosa had the ability to desulphate mucin. Mucin-sulphatase activity was tested by incubating bacterial cell suspensions with 35S-sulphated mucins purified from LS174T and HT29-MTX human colon carcinoma cell lines. These mucins were also used to test for differences in substrate specificities. Mucin-sulphatase activity was detected in all nine B. cepacia strains and in four of six P. aeruginosa strains. There was strain variability in the level of mucin-sulphatase activity. Aryl-sulphatase activities of Pseudomonas isolates (determined with methylumbelliferyl sulphate) were c. 20-fold higher than those of B. cepacia strains, and were independent of mucin-sulphatase activity. This is the first report to demonstrate desulphation of mucin by B. cepacia and P. aeruginosa. It is concluded that B. cepacia and P. aeruginosa produce one or more cell-bound glycosulphatase(s), in addition to aryl-sulphatase activity. Mucin-sulphatase activity of B. cepacia and P. aeruginosa may contribute to their association with airway infections in patients with cystic fibrosis.  (+info)

Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. (7/249)

The Sac3 gene product of Chlamydomonas positively and negatively regulates the responses of the cell to sulfur limitation. In wild-type cells, arylsulfatase activity is detected only during sulfur limitation. The sac3 mutant expresses arylsulfatase activity even when grown in nutrient-replete medium, which suggests that the Sac3 protein has a negative effect on the induction of arylsulfatase activity. In contrast to its effect on arylsulfatase activity, Sac3 positively regulates the high-affinity sulfate transport system-the sac3 mutant is unable to fully induce high-affinity sulfate transport during sulfur limitation. We have complemented the sac3 mutant and cloned a cDNA copy of the Sac3 gene. The deduced amino acid sequence of the Sac3 gene product is similar to the catalytic domain of the yeast Snf1 family of serine/threonine kinases and is therefore classified as a Snf1-related kinase (SnRK). Specifically, Sac3 falls within the SnRK2 subfamily of kinases from vascular plants. In addition to the 11 subdomains common to Snf1-like serine/threonine kinases, Sac3 and the plant kinases have two additional subdomains and a highly acidic C-terminal region. The role of Sac3 in the signal transduction system that regulates the responses of Chlamydomonas to sulfur limitation is discussed.  (+info)

Transposition of SRY into the ancestral pseudoautosomal region creates a new pseudoautosomal boundary in a progenitor of simian primates. (8/249)

We have isolated the prosimian lemur homologues for STS and SRY. FISH unambiguously co-localized STS with SHOX, IL3RA, ANT3 and PRK into the meiotic X-Y pairing region (PAR) of lemurs. In contrast to the close proximity of SRY to the pseudoautosomal boundary (PAB) on the Y chromosome in simian primates, SRY maps distant from the PAR in lemurs. Most interestingly, we were able to determine a DNA sequence divergence of 12.5% between the human and lemur SRY HMG box. This divergence directs to a 52 million year period of separate evolution of human and lemur SRY genes. Phylogenetically, this time period falls in between the times that prosimians and New World monkeys branched from the human lineage. Thus, we conclude that approximately 52 million years ago a transposition of SRY into the ancestral eutherian PAR distal to STS and PRK defined a new PAB in a simian progenitor. By this event, STS and PRK, amongst other genes, were excluded from the X-Y crossover process and thus became susceptible to rearrangements and/or deterioration on the Y chromosome in simian primates.  (+info)